INTRODUCTION

India ratified the Vienna Convention for the protection of ozone layer on June 19, 1991 and the Montreal Protocol on Substances that Deplete the Ozone Layer on September 17, 1992. The Copenhagen, Montreal and Beijing Amendments were also ratified on 3rd March 2003. The India Country Programme was prepared in 1993 chalking out a strategy to phase-out production and consumption of Ozone Depleting Substances (ODSs).

Atmospheric ozone monitoring started in India since 1928 when Dr Royds made total ozone measurements in Kodaikanal with Dobson photoelectric ozone spectrograph as part of the first world-wide ozone measurements organized by Prof. G. M. B. Dobson. The first Dobson Spectrophotometer was acquired by India Meteorological Department (IMD) in 1940. The Indian ozone observational and research programme are as follows:

OBSERVATIONAL ACTIVITIES

Column measurements of ozone and other gases/variables relevant to ozone loss

Total ozone measurements are being carried out at 6 stations by the IMD. Present network of six Dobson and two Brewer spectrophotometers are stationed at Srinagar, New Delhi, Varanasi, Pune and Kodaikanal.

At all stations, routine measurements of total ozone are made (up to a maximum of six times per day) by trained personnel. Whenever, conditions permit, Umkehr observations are also made form these stations to compute the vertical distributions of ozone. Later, two Brewer Ozone Spectrophotometers were procured. One (#89) was installed at National Ozone Centre, IMD, New Delhi and other (#94) at Kodaikanal. It has an advantage over the Dobson Spectrophotometer because it is semiautomatic. Besides, it could also measure SO₂, NO₂ and UV-B.

Profile measurements of ozone and other gases/variables relevant to ozone loss

Vertical Ozone Distribution : The development of an Indian ozonesonde was taken up in 1963. The first successful sounding was carried out in September, 1964. The sondes were subsequently intercompared in WMOII03C. Further, comparisons were also held in West Germany in 1970 and 1980; in 1991 (Canada) and 1996 (Germany). Since early 1970, fortnightly soundings were attempted at New Delhi, Pune, Thiruvanathapuram, Dakshin Gangotri and Maitri (Antarctica).

The Laser Hetrodyn System (LHS) and mm wave radiometer : This system monitors the 10 micron ozone line in absorption mode against the Sun. The mm wave radiometer observes the 101 GHz ozone line in emission mode. This instrument has the advantage over LHS that it can be operated round the clock under all weather conditions as it does not require direct sun light. The line profiles in both the experiments are inverted to obtain the Ozone height distribution. The ozone height profiles over Delhi and Maitri have been generated for a limited period using these techniques.

Surface Ozone Measurements : During the 70s, the electrochemical surface ozone measurement system was successfully developed. The system is successfully operating at New Delhi, Pune, Kodaikanal, Thiruvanathapuram, Nagpur, Srinagar, Dakshin Gangotri and Maitri.

Measurement of Minor Constituents : Various greenhouse molecules such as Carbon Dioxide (CO₂), Methane (CH₄), Nitrous Oxide (NOₓ) have also been measured regularly at National Physical Laboratory, New Delhi, Physical Research Laboratory, Ahmedabad and Banaras Hindu University, Varanasi.
UV measurements

Broadband measurements
Regular measurement of UV-B radiation by filter photometer were started in 1979 at National Physical Laboratory, New Delhi. At present under Indian Middle Atmospheric Programme (IMAP) a chain of 7 stations have been established for routine measurement of global UV-B radiation at 280, 290, 300 and 310nm using narrow band interference filters at Shillong (IMD), Jodhpur (IMD), Pune University (Pune), Andhra University (Waltair), Mysore University (Mysore) and Trivandrum (Center for Earth Science Studies).

UV-Biometer: The measurement of Minimum Erythermal dose in the UV-B range started at Delhi in 1995 January and is continuing.

Narrowband filter instruments
India started using Narrowband filter instruments for measurement of radiation from July 1957 at 21 principal and 22 ordinary stations where continuous recording of global and defused solar radiances and bright hours of sunshine are measured. UV-A, UV-B and UV-Total measurement has also been introduced at all the stations to study the impact of climate on human health, agriculture productivity, ozone depletion etc.

Spectoradiaometers
The spectral measurements in the UV-B range at ½ nm interval started in 1989 and is continuing. The UV network is likely to expand and coordinate with international programme.

Calibration activities
The network instruments are calibrated against the National Standard at regular intervals. The National Standard is in turn, inter-compared against World standard in WMO organized International Intercomparisons. India participated in such comparisons held at Belsk (1974), Boulder (1977), Melbourne (1984) and Japan (1996). IMD, New Delhi is the National Ozone Centre for India and the Regional Ozone Centre for the Regional Association-II (Asia) of the World Meteorological Organization (WMO).

UV measuring instruments have been calibrated by using monochromators and wherever possible by using brewer spectrophotometer.

RESULTS FROM OBSERVATIONS AND ANALYSIS

The major findings are as follows:

a) Analysis of long term total ozone data from the Indian stations have not shown any trend.
b) From the equator to about 20°N, the tropospheric ozone concentration remains practically same throughout the year.
c) Significant changes noticed in the vertically distribution of ozone associated with passing weather systems occur at New Delhi during the non-monsoon months.
d) Depletion of ozone over Antarctica is observed confirming occurrence of the Antarctic Ozone hole. The ozone hole phenomenon has also been observed over the Indian Antarctic station at Maitri (70°S, 11°E) where IMD monitors ozone amount throughout the year.

THEORY, MODELLING, AND OTHER RESEARCH
Impact studies of UV rays on plants, animals and human beings were conducted in Jawaharlal Nehru University, Banaras Hindu University etc. which were published in national and international journals. Central Radiation Laboratory, Pune has also been conducting radiation
studies at 45 stations. India also maintains one weather monitoring station at Maitri, Antarctica with a facility for measurements of global and diffuse solar radiation using pyranometers and of optical depth using a sunphotometer.

DISSEMINATION OF RESULTS

Results of the studies are disseminated through electronic media/website of respective institutions and query services.

Data reporting

The total ozone data and Umkehr data (vertical profile of Ozone) are being regularly sent in WMO format to the World Ozone Data Centre (W03DC) Canada, and are being regularly published by the Centre.

Information to the public

The information on ozone concentration and other constituents are placed in the website of India Meteorological Department.

Relevant scientific papers

“UV-B flux increase during Coronal Mass Ejection” by Saumitra Mukherjee and Anita Mukherjee, Jawaharlal Nehru University, New Delhi; 4th (Virtual) Thermospheric/Lonospheric Geospheric Research (TIGER) Symposium.

“Possible Biological Effects by UV-radiation Newly Detected from Internally Administered Radioisotopes” by M. A. Padmanabha Rao, 114, Charak Sadan, Vikaspuri, New Delhi, India

“Modernization of Radiation Network” by R. D. Vashishtha & M. K. Gupta of India Meteorological Department, Pune, India

PROJECTS AND COLLABORATION

Ministry of Science and Technology, under its atmospheric programme, is developing projects for monitoring of ozone and minor constituents including various greenhouse molecules such as Carbon Dioxide (CO2), Methane (CH4), Nitrous Oxide (NOx).

Indian Middle Atmospheric Programme (IMAP), operating since 1982, has provided an umbrella for integrating all Indian efforts on ozone research. Rocket Programmes in collaboration with ex-USSR were stepped up during this period with payloads from Physical Research Laboratory, Ahmedabad and the National Physical Laboratory, Delhi. These, along with balloon and ground based measurements, have well characterized the ozonesphere over India.

Indo-Russian collaborative programme on variations in ozone and aerosol content in tropics/extratropical troposphere and stratosphere are being studied.

A collaborative programme with Ultraviolet International Research Center, Finland has been launched to monitor the UV radiations.
FUTURE PLANS

a) Continuous monitoring of ozone profile over the country.
b) Study on atmospheric chemistry in relation to ozone layer depletion and climate change.
c) To participate in the international intercomparisons of Dobson Spectrophotometer, Brewer Spectrophotometer and Ozonesonde.
d) To develop biological system to monitor UV-B.
e) To continue research on impact of UV-B on human health and eco-systems.
f) To develop climatic models to predict the climatic change over India.

NEEDS AND RECOMMENDATIONS

In accordance with the decision of the Meeting of Parties to the Vienna Convention, present activities need to be continued to monitor ozone concentration and UV radiations. Research activities relating to impact of UV radiations on life and its supporting system need to be conducted.

The Ozone Research Managers meeting may recommend to the Meeting of Parties for taking decisions to request Parties to provide adequate support to continue the present activities and to carry out future plans.

Developed countries may consider to have bilateral assistance programme with developing countries to strengthen ozone and UV-monitoring and research system.

UNEP networking system may also include ozone and UV monitoring activities in their agenda.
