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Environmental effects of ozone depletion and its interactions with cli-
mate change: Progress report, 2016 
 
United Nations Environment Programme, Environmental Effects Assessment 
Panel§ 
 
The Parties to the Montreal Protocol are informed by three Panels of experts. One of 
these is the Environmental Effects Assessment Panel (EEAP), which deals with two fo-
cal issues. The first focus is the effects on increased UV radiation on human health, ani-
mals, plants, biogeochemistry, air quality, and materials. The second focus is on inter-
actions between UV radiation and global climate change and how these may affect hu-
mans and the environment. 
 
When considering the effects of climate change, it has become clear that processes re-
sulting in changes in stratospheric ozone are more complex than previously believed. 
As a result of this, human health and environmental issues will be longer-lasting and 
more regionally variable. 
 
Like the other Panels, the EEAP produces a detailed report every four years; the most 
recent was published as a series of seven papers in 2015 (Photochem. Photobiol. Sci., 
2015, 14, 1-184). In the years in between, the EEAP produces less detailed and shorter 
Progress Reports of the relevant scientific findings. The most recent of these was for 
2015 (Photochem. Photobiol. Sci., 2016, 15, 141-147). The present Progress Report for 
2016 assesses some of the highlights and new insights with regard to the interactive na-
ture of the direct and indirect effects of UV radiation, atmospheric processes, and cli-
mate change.  The report is also published in (Photochem. Photobiol. Sci., 2017, DOI: 
10.1039/c7pp90001e). The more detailed Quadrennial Assessment will be made availa-
ble in 2018. 
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Dedication 
 

This Progress Report is dedicated to the memory of Professor Jan van 

der Leun, founding co-chair in 1987, and member of the UNEP Environ-

mental Effects Assessment Panel (EEAP), and contributor to the section 

on human health. In 1971, through attending a dedicated meeting of the 

National Academy of Sciences, Jan became involved in assessing the im-

pact of a looming threat of a thinning ozone layer. He quantified the effect 

on skin cancer, became a renowned expert on the subject and conducted 

important research on the dose-effect in UV carcinogenesis to improve his 

assessments. We will remember Jan for his untiring dedication also to 

other health impacts as well as well as interactions with climate change 

and in communicating the broad scientific basis for protecting the strato-

spheric ozone layer. For the EEAP, his enduring legacy lies in the remark-

able contribution he made in communicating the importance to policymak-

ers, scientists, and the public of phasing out the substances that were de-

pleting the ozone layer and consequently leading to increasing UV radia-

tion. He indeed had a particular talent for emphasising and linking the sci-

entific and political implications of protecting the ozone layer. He has left 

lasting and warm memories of his presence and leadership; we will keep 

these memories of a collegial diplomat and personal friend as we carry on 

his good work. 

 
 

Jan Cornelis van der Leun, June 14, 1928–July 6 2016 

He was a man amongst men, we shall not see his like again. 
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1 Ozone-climate interactions and effects on solar UV ra-
diation at the Earth’s surface 

1.1 Observations and model calculations taken together indicate that signs 
of recovery of the Antarctic ozone loss have now emerged for the month 
of September. However, variability due to natural causes, such as vol-
canic eruptions, precludes similar conclusions for later months when 
the UV radiation is higher and of greater biological relevance. Ozone de-
pleting substances have been controlled by the Montreal Protocol. Therefore 
increases in Antarctic ozone318 and decreases in UV radiation are expected in 
response to this historic agreement. Volcanic eruptions episodically interfere 
with recovery. For example, in 2015, close to record high levels of UV radia-
tion were observed at the South Pole later in the spring (Fig. 1), which were 
partly caused by en-
hanced ozone losses 
due to the eruption of 
the Calbuco volcano in 
Chile. 

1.2 As concentrations of 
ozone depleting sub-
stances (ODS) de-
crease over the next 
decades, greenhouse 
gases (GHGs) will be-
come the dominant 
driver of changes in 
stratospheric ozone. 
UV radiation will de-
crease in the middle 
and high latitudes rela-
tive to the historical pe-
riod 1955–1975 but the 
direction of change in 
the tropics depends on 
the emission scenario. 
Model simulations have quantified changes of ozone and UV radiation for the 
period of 2075-2095 relative to the historical period of 1955-1975 under differ-
ent emissions scenarios56. This study suggests that stratospheric ozone will 
increase substantially above its pre ozone ‘hole’ levels (also known as “super 
recovery”) at all latitudes, if emissions of carbon dioxide (CO2), methane (CH4) 
and nitrous oxide (N2O) continue unabated (concentrations according toa 

                                            
aRepresentative Concentration Pathways are greenhouse gas concentration (not emissions) trajecto-
ries adopted by the IPCC for its fifth Assessment Report (AR5) in 2014. The pathways are used for 
climate modeling and research. They describe four possible climate futures, all of which are consid-
ered possible depending on how much greenhouse gases are emitted for the years to come. The four 
RCPs, RCP2.6, RCP4.5, RCP6, and RCP8.5, are named after a possible range of radiative forcing 
values in the year 2100 relative to pre-industrial values (+2.6, +4.5, +6.0, and +8.5 W m-2, respec-
tively). 

 
Fig. 1. Daily maximum UV Index measured at the South 
Pole in 2015 (red line) compared with the average (white 
line) and the lowest and highest values (grey shading) of 
observations performed between 1990 and 2014. Meas-
urements between the second half of October 2015 to mid-
December 2015 were close to the upper limit of historical 
observations. These large values can be attributed to the 
deep ozone ‘hole’ of 2015, which was well centered over 
the South Pole. The figure is adapted from378 and updated 
with data from November and December 2015. 
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RCP8.5.162) Consequently, the UV Index (UVI) would decrease substantially 
at all latitudes. The decreases of UVI at Northern mid-latitudes would range 
between ca 5 and ca 15%, with the largest decreases expected in the winter 
months, thus further limiting UV radiation available for production of vitamin D 
during winter (see section 2). Decreases at Southern mid-latitudes are some-
what smaller. In the tropics, the decreases would be smallest and range be-
tween 0 and 7%. These projections are greatly dependent on the emission 
scenario. For example, if actual emissions of CO2, CH4 and N2O could be ag-
gressively reduced to the RCP2.6 scenario, UVI would increase by up to 5% 
at all latitudes, except in the spring at high latitudes. In the Arctic spring, de-
creases of up to 5% are predicted, while in the Antarctic spring the remaining 
halocarbons continue to deplete polar ozone and increase surface UV expo-
sure by up to 20%. Note that these projections only considered changes in 
ozone and did not take into account changes in clouds, aerosols or surface al-
bedo. According to Bais et al.22, changes in UV radiation due to these factors 
are expected to be of similar magnitude to those related to changes in ozone. 
 
In another study,229 simulations with a chemistry-climate model forced by 
three different emissions scenarios (RCP4.5, RCP6.0, and RCP8.5) suggest 
that total ozone columns in the tropics will be lower by the end of the 21st 
century compared to the 1960s in all scenarios with the largest decrease in 
the RCP6.0 scenario. For the RCP6.0 scenario the concomitant increase in 
DNA-weighted UV irradiance reaches 15% in specific tropical regions (e.g., in 
South America, southern Asia and over large parts of the Pacific Ocean). 

1.3 There is increased confidence that stratospheric ozone depletion is a 
major driver of climate change in the Southern Hemisphere. For the first 
time, a climate model that included interactive chemistry to describe the evo-
lution of stratospheric ozone has been used to assess the influences of the 
depletion of ozone in the Antarctic ozone ‘hole’ on the Southern Ocean circu-
lation and Antarctic sea ice.198 This model predicts stronger cooling of the 
lower stratosphere and accelerated circumpolar westerly winds in Antarctica 
during November–January than models with prescribed chemistry that have 
been used in the past. The stronger trends in surface wind-stress predicted by 
this model result in larger increases of the Southern Ocean meridional over-
turning circulation, leading to year-round stronger ocean warming near the 
surface and enhanced decreases in Antarctic sea ice, which is consistent with 
previous studies discussed in a previous assessment344. The results of the 
model have been verified by comparison with historical observations of sea 
ice extent over the 1990-2010 period. 
 
Ozone depletion in Antarctica was shown to explain more than half of the ob-
served long-term changes in austral subtropical precipitation between 1979 
and 2013, while increasing GHGs have a weaker role.21 This finding emerged 
from a statistical modelling approach (maximum covariance analysis) that was 
used to quantify the relative contribution of different climate forcings, including 
ozone depletion, changes in the sea surface temperature of the equatorial Pa-
cific, and increasing GHGs. 

1.4 Stratospheric ozone depletion and increasing greenhouse gases cause 
changes in the tropical atmospheric circulation, resulting in a poleward 
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shift of the boundaries of climatic zones. A modelling study has shown that 
the observed poleward expansion of the Hadleyb circulation is caused mainly 
by anthropogenic forcings, such as increasing GHGs and stratospheric ozone 
depletion, rather than by natural forcings.332 It was found that the effect of 
ozone depletion is dominant in the austral spring and summer for the southern 
cell, but less intense for the northern cell in the boreal spring. The continued 
expansion of the Hadley cell expected by the unabated increase of GHGs will 
be slowed down by ozone recovery. This modification of the Hadley cell will 
modify the boundaries of the climatic zones, leading to expansion of subtropi-
cal dry zones to higher latitudes, and affect terrestrial and aquatic ecosystems 
(see sections 3 and 4). 

1.5 The Montreal Protocol has been beneficial not only for stratospheric 
ozone and surface UV radiation, but also in mitigating the adverse ef-
fects of intensifying tropical cyclones. Most ozone-depleting substances 
(ODS) controlled by the Montreal Protocol also are greenhouse gases and 
therefore the decrease in their concentrations in the atmosphere since the late 
1990s379 have prevented additional warming of the sea surface, which is an 
important factor in determining the intensity of tropical cyclones. A modeling 
study267 has shown that, without the Montreal Protocol, the intensity of tropical 
cyclones would have been three times as large by the year 2065. Cyclone-in-
duced damage rises rapidly with increasing cyclone intensity, and global eco-
nomic savings due to implementation of the Montreal Protocol will likely be in 
the range of tens to hundreds of billions of US dollars.251 

1.6 In the last two decades, changes in solar UV radiation in northern mid-
latitudes have been mainly controlled by clouds and aerosols rather 
than by ozone. A study of a 20-year record (1994-2014) of spectrally re-
solved UV irradiance in Thessaloniki, Greece,113 revealed increases in annual 
mean UV irradiance of 2-6% per decade. In the summer, the increases are 
larger (7-9% per decade) and are caused mainly by decreasing cloudiness. 
During the last decade of the record (since the mid-2000s) UV-B and UV-A ir-
radiance have been stable, or slightly decreasing due mainly to effects of aer-
osols and clouds, which masked the effects of the very small changes in 
ozone. Ozone effects are mainly manifested in the short-term (year-to-year) 
variability of UV irradiance. These results are consistent with results for other 
locations discussed previously.344 

1.7 Satellite-derived estimates of UV irradiance offer high spatial coverage 
and are increasingly used for informing the public (e.g., via mobile 
phone applications). However, these estimates are often positively or 
negatively biased compared to ground-based measurements particularly 
in the presence of clouds, high concentrations of aerosols, and snow or 
ice. Estimates of UV irradiance from satellites are derived by combining 
measurements of reflected radiation with model calculations. Their accuracy 
is therefore often limited by incomplete information of the model input parame-
ters, such as aerosols, clouds and, at some locations, surface reflectivity. Irra-
diance estimates are generally less accurate for UV-B than UV-A regions of 

                                            
b The Hadley circulation is a large-scale atmospheric convection cell in which air rises at the equator 
and sinks at medium latitudes, typically at about 30° Northern or Southern latitudes. 
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the spectrum. For example, the irradiance inferred from the Ozone Monitoring 
Instrument (OMI) onboard NASA’s Aura satellite exceeded clear-sky ground-
based measurements at Thessaloniki, Greece, by up to 14% at 305 nm and 
up to 10% at 310 nm. In contrast, at 324 nm and 380 nm, the OMI data under-
estimated the UV irradiance by less than 5%.399 These wavelength-dependent 
biases indicate that the spectral absorption and scattering properties of aero-
sols may not be correctly addressed by the satellite data processor. At the 
Observatoire de Haute Provence (OHP), located in a pristine mountainous re-
gion of southeast France, UV data from OMI and the Global Ozone Monitoring 
Experiment (GOME-2) overestimate the clear-sky noon-time UV Index (UVI) 
by 6% and 2%, respectively. At Saint-Denis (SDR), located on La Réunion Is-
land in the Indian Ocean, both OMI and GOME-2 observations are biased 
high by 4% relative to ground-based observations. These small biases gener-
ally increase for all-sky conditions and are 9% at OHP and 11% at SDR.51 The 
results of the above studies are only recent examples; differences between 
satellite and ground-based instruments can be smaller or larger at other loca-
tions.344 
 
Recent field experiments indicated that when soot, volcanic sand, and glacial 
silt are deposited on snow surfaces, they sink within minutes into the snow. 
For reflected radiation measured by satellite radiometers at nadir viewing di-
rections (i.e., vertically below the satellite) the surface appears darker, but for 
larger viewing angles it appears brighter, almost as for natural snow.263 These 
discrepancies in the estimated reflectivity may affect the accuracy of satellite-
derived spectral irradiance data over snow-covered regions. Ground-based 
measurements of UV radiation therefore continue to be valuable. 

1.8 Calculations of risk-benefit thresholds from exposure to UV radiation 
may require revision. Risk-benefit assessments from exposures to UV radia-
tion are usually based on the action spectra for erythema (sun-burning) and 
production of vitamin D.227 As has been noted in recent reports,22, 252 the cur-
rently-used CIE action spectrum for production of pre-vitamin D3 in human 
skin47 may not be correct and may also change as a function of exposure. A 
recent paper discussing chemical modelling of the complex reaction pathways 
involved in skin chemistry predicts an initial action spectrum that is similar to 
the CIE action spectrum, but is displaced to shorter wavelengths.354 Such a 
displacement would be more consistent with the observation that little vitamin 
D is produced at latitudes poleward of 40° in winter.369 Further, this work pro-
vides evidence that the shape of the vitamin D action spectrum changes as a 
function of exposure to UV radiation and will become negative at wavelengths 
between 315 and 330 nm after exposures of only a few SEDc. A negative ac-
tion spectrum means that vitamin D is destroyed rather than produced after 
absorption of photons in this wavelength range. If true, this would have im-
portant implications for people who are confined indoors behind glass win-
dows, which transmit only UV-A, but not UV-B radiation. The study by van Dijk 
et al.354 also highlighted large differences in the absolute amounts of vitamin 

                                            
c SED or Standard Erythemal Dose equals 100 J m-2 of erythemally-weighted UV radiation, which 
quantifies the effect of UV radiation in the development of sunburn. 
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D derived by the various action spectra for vitamin D that are currently pro-
posed in the literature. 

2 Ozone, ultraviolet radiation and health: an assessment 
of the latest research 

2.1 Exposure to UV radiation has both risks and benefits for human health. 
For any individual, there is likely to be an optimal level of exposure, but this is 
highly variable and difficult to define. There are both direct and indirect effects 
on health. Direct adverse effects include skin cancers, cataract, and reactiva-
tion of some viral infections. The best defined direct benefit is the synthesis of 
vitamin D. Indirect effects include those resulting from changes in food quality 
(see section 3) and disinfection of surface waters used for drinking (see sec-
tion 4). 

2.2 Warmer temperatures in the future will alter how much time people 
spend outdoors. Greater time spent outdoors may increase exposure to 
UV radiation and change the balance of risks and benefits for human 
health. A recent Australian study showed that as the ambient temperature in-
creased, people living in warmer climates tended to spend less time outdoors, 
while those living in cooler climates spent more time outdoors.388 Depending 
on whether effective sun protection is used, increasing time outdoors in-
creases exposure to both UV-A and UV-B radiation. Research on the health 
risks of stratospheric ozone depletion has focused on UV-B radiation as the 
cause of DNA damage and skin cancers. New research suggests that UV-A 
irradiation inhibits the repair of DNA damage through a number of path-
ways,55, 175, 238 and fosters local invasion of tumour cells.97, 173 These pro-
cesses, together with immune suppression caused by both UV-A and UV-B 
radiation82, are likely to enhance the development and spread of skin cancers. 
During the course of the 21st century, predicted changes in ambient UV radia-
tion resulting from latitude-dependent variations in stratospheric ozone and 
climate-induced changes in clouds will alter the balance of risks and benefits 
for human health.For example, under a global warming future, the relationship 
between ambient UV radiation and incidence of skin cancer389 will be modified 
because of climate-associated changes in sun exposure behaviour. 

2.3 The overall incidence of cutaneous malignant melanoma and non-mela-
noma skin cancer (now called keratinocyte cancer) continues to in-
crease in most countries for which data are available, but is decreasing 
in several countries in younger age groups. Skin cancer is the most com-
mon cancer in many regions where the population is predominantly fair-
skinned. Changes in incidence of cutaneous malignant melanoma (CMM) 
vary between countries or regions. Incidence has increased in all age groups 
in Nordic and northern European countries (for example, by over 4% per year 
in Denmark from 1985 to 2012), with particularly steep increases in the elderly 
(70+ years).34, 124, 130, 149, 152, 257, 323, 353 In southern European countries, overall 
incidence of CMM has also increased,8, 80, 266, 269 but in some regions (for ex-
ample, Catalonia) is stable (30-34 year old’s) or has decreased (20-29 year 
olds) in younger age groups.269 This pattern of increasing overall incidence 
but decreasing incidence in younger age groups (<20 years) is also apparent 
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in the USA and New Zealand.60, 311, 371 In Australia, after taking account of the 
changing population structure toward an older population (i.e., age-standard-
ised rates), overall incidence of CMM has decreased by 0.7% per year since 
2005.371 Incidence of CMM has also decreased (by 3% per year) in Israel,310 
but has increased in Iran.277 In South Africans with fair skin, incidence of CMM 
is high and increasing.211 
 
Keratinocyte cancers (KCs) include basal cell carcinomas (BCC) and squa-
mous cell carcinomas (SCC). These arise from the most common cells in the 
epidermis of the skin, called keratinocytes (Fig. 2). Age-standardised inci-
dence rates of KC are continuing to rise around the world.1, 13, 59, 289, 293, 310 In-
creases may be greater in women than in men.13, 59, 293 In some locations, 
such as Canada1 and northern California,13 the rates are stabilising in younger 
cohorts. 
 
Reductions in skin can-
cer incidence in 
younger age groups are 
probably due to a com-
bination of effective sun 
protection programs 
and a more indoors life-
style. However, the in-
fluence of increasing 
numbers of darker 
skinned migrants, who 
are at lower risk, to 
countries with high skin 
cancer incidence, can-
not be discounted.269 
Persistent increasing in-
cidence in older age 
groups likely reflects 
high sun exposure in 
earlier life. It is concern-
ing that the new data 
available for northern 
Europe show that incidence of CMM and KC in all age groups is continuing to 
increase.  

2.4 Due to its high incidence, skin cancer and particularly keratinocyte can-
cer, result in a considerable economic burden. The lifetime cost of the 
15,000 new cases of skin cancer diagnosed in New South Wales (NSW), Aus-
tralia, in 2010 was estimated to be AUD 536 million (ca USD 400 million at 
current exchange rates) or AUD 3514 per incident case (ca USD 2500); direct 
costs for management of the skin cancer accounted for 72% of this total.91 Alt-
hough the cost per CMM was much higher than the cost per KC (AUD 44,279 
vs 2459; ca USD 34,000 vs 1,800), KC accounted for 68% of total costs due 
to its higher incidence. In South Africa the cost per lesion was much lower 
than in Australia (ca USD 150) but skin cancer still constituted a significant 

 
Fig. 2.  A schematic diagram of the superficial layers of hu-
man skin. Epidermal cells originate in the deeper layers 
and move toward the surface as they age, with new cells 
constantly being produced below them. The horny layer 
consists of dead keratinocytes that are shed and replaced 
from below. 
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economic burden, with an estimated annual cost of USD 15.7 million.125 Costs 
are also high in countries where skin cancer incidence is lower. In the USA, 
the average number of adults treated for skin cancer was 4.9 million in 2007-
2011 (an increase from 3.4 million in 2002-2006), at an annual total cost of 
USD 8.1 billion (up from 3.6 billion in 2002-2006). This 126% increase is 
much greater than the increase of 25% seen for all other cancers over the 
same time period.137 
 
Models suggest that investment in skin cancer prevention campaigns, particu-
larly in areas where there is an extremely high incidence, have an economic 
benefit. An analysis of the NSW situation found a cost-to-benefit ratio of 3.85, 
indicating that for every $1 invested in prevention there would be an economic 
return of $3.85.92  

2.5 Skin cancer is becoming recognised by a range of countries as an occu-
pational disease. Implications include a responsibility by workplaces to 
provide adequate sun protection and the possibility that workers can 
claim compensation for their skin cancer. In a pooled analysis of data from 
Brazil and Italy, occupational sun exposure was associated with a marked in-
crease in risk of CMM.112 Other studies show a link with KCs but not CMM.339 
Outdoor workers are typically exposed to a dose of UV radiation that is 2-3 
times higher than that of indoor workers who spend less time outdoors. There 
is an associated increase in KCs; for example, in one study, outdoor workers 
had a 43% higher risk of BCC and a two-fold higher risk of SCC than the gen-
eral population.167 In a study in Northern Greece, farmers not only developed 
more BCCs than workers in other occupations, but these occurred at a 
younger age and were 6 times more likely to be of an aggressive subtype.9 
Several studies have shown increased incidence of CMM in airline pilots and 
cabin crew. In a recent meta-analysis of these studies, there was a two-fold 
increased risk among pilots.300 However, the similar increased risk among 
cabin crew suggests that this is unlikely to be an effect of UV radiation enter-
ing the cockpit, and other explanations, such as travel to sunny locations, 
need to be considered.  

2.6 Sunscreen provides effective protection against sunburn and may de-
crease UV-induced skin cancers. Research shows that sunscreen provides 
protection from DNA damage and sunburn following exposure to UV radiation 
(reviewed in309), see Fig. 3. This suggests that sunscreens should protect 
against skin cancer. Regular use of sunscreen was associated with a lower 
number of nevi (moles), a marker of melanoma risk, in children in one study 
from Catalonia, Spain,234 but a higher prevalence of multiple nevi (>50) was 
found in adults in a large study from Finland.315 The greater number of nevi in 
adults is likely due to increased sunburns and sunbathing vacations among 
sunscreen users, as shown in the Norwegian Women and Cancer Study.119 
However, among sunscreen users, those who used a sunscreen with a Sun 
Protection Factor (SPF) of 15 or higher at least once were less likely to de-
velop CMM than those consistently using sunscreen with an SPF of <15. The 
study reported that incidence of CMM could be reduced by 18% with regular 
use of sunscreen of SPF≥15 by women aged 40-75 years.119 Indeed, the only 
randomised trial testing sunscreen use for the prevention of skin cancer 
showed that daily sunscreen use reduced the risk of SCC and melanoma.126, 
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127 On the basis of the results from this study, it was estimated that regular 
use of sunscreen in Australia could prevent around 9% of SCC (n=14,190 tu-
mours in 2008) and 14% of CMM (n=1730 tumours).256 However, a recent 
systematic review highlighted some limitations of this trial and observed that 
there was, as yet, insufficient high quality evidence to conclusively show that 
use of sunscreen prevented skin cancers.298 

2.7 Despite strong public health programs providing guidance about sun 
protection in many countries and research showing high levels of 
knowledge and a positive attitude toward sun protection, compliance re-
mains low, and risky sun exposure behaviour and a preference for a tan 
are common. Teenagers are particularly resistant to messages to protect 
their skin against the sun. Qualitative research suggests that the desire for a 
tan outweighs concerns about future risks of photoageing and skin cancer.96 
In Hungary, 74% of 12-19 year old’s had experienced at least one serious 
sunburn, 5% purposely sunbathed daily, and 10% did not use any form of sun 
protection.118 In Ireland, which has the highest incidence of CMM in Europe, 
nearly 50% of a sample of Cork university students reported deliberate tan-
ning in the previous summer.111 Parents use sun protection measures more 
commonly for their children than for themselves.235 A systematic review of the 
evidence showed that a high proportion of people diagnosed with CMM re-
ported subsequent sunbathing (up to two-thirds at least once since diagnosis), 
sunburns (60% at least once in a 3-year period) and indoor tanning (up to a 
quarter of survivors) and did not practice skin self-examination.240 In children 
of CMM survivors, 28% had been sunburnt at least once in the previous 6 
months.340 Sun exposure in childhood may be particularly important to later 
life risk of CMM and BCC. Health gains through decreasing incidence of these 
cancers in younger age groups that are currently being seen in many coun-
tries (see section 2.3) are likely to be reversed without continued investment 
in sun protection programs targeting sun exposure in childhood, adolescence, 
and high-risk groups. 

2.8 Immunosuppression following solid organ or stem cell transplantation 
greatly increases the risk of all forms of skin cancer, particularly squa-
mous cell carcinoma. There was a nearly 8-fold increase in KC and a two-
fold increase in invasive CMM following heart transplantation.308 CMM and lip 
cancers were more common in recipients of hematopoietic stem cell trans-
plantations compared to the general population.286, 348 The location of the skin 
cancers points to UV radiation as the primary cause, coupled with drug-in-
duced post-transplantation immunosuppression121 and effects on repair of 
DNA damage.191 

2.9 UV-induced immune suppression has both positive and negative conse-
quences for a range of diseases, including autoimmune disease and re-
activation of viruses. Exposure to UV radiation results in suppression of im-
mune responses that may have beneficial effects for disorders such as for au-
toimmune disease (e.g., multiple sclerosis) and allergy, but cause harm 
through allowing the development of skin cancer and reactivation of viral in-
fections. A recent study from Perth, Western Australia, reported that the num-
ber of cases of shingles (caused by reactivation of herpes zoster) notified to 
the register of infectious diseases increased with increasing ambient levels of 
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UV radiation.186 This confirms similar findings published previously, from Po-
land,398 Korea171 and Taiwan.386 Another human herpes virus, HHV8, is a nec-
essary, but not sufficient cause of Kaposi sarcoma. In a cohort of American 
male veterans infected with HIV (prior to the availability of antiretroviral ther-
apy) the risk of Kaposi sarcoma was increased in men with a diagnosis of KC 
(a marker of high exposure to UV radiation) and in those living at locations 
with high ambient UV radiation.57 The net benefit or harm of UV-induced im-
mune suppression is not yet clear; further studies, particularly around the size 
of any benefits for autoimmune and allergic diseases, will better define the 
balance of risks and benefits. 

2.10 Exposure of the eye to sunlight has both adverse and beneficial effects 
on the eye. A gradient of increasing incidence of conjunctival melanomas 
with closer location to the Equator, and the presence of mutations with a UV-
signature in these tumours, strongly suggest that UV radiation is a major 
cause.285 Melanomas of the eye are rare and conjunctival melanoma ac-
counts for only 5% of all ocular melanomas. The more common uveal mela-
noma that involves structures deeper in the eye is unlikely to be directly UV-
induced.140  
 
Cataract is the leading cause of blindness worldwide. In developed countries, 
cataract surgery is widely accessible so that cataract-related vision loss is un-
common.237 Nevertheless, socio-economic and, to some extent, geographical 
(e.g., urban vs rural) differences in access to effective surgery can lead to dis-
parities in cataract-associated loss of vision.237 Cataract is a major contributor 
to vision loss in Africa.211 Exposure to UV radiation is a major cause of cata-
ract, especially cortical and posterior sub-capsular cataract. In a recent study, 
there was a much higher prevalence of cataract, particularly cortical cataract, 
and with a younger age of onset, in a high altitude (higher UV-B radiation), 
compared to a low altitude, region of China.397 Furthermore, there was a posi-
tive correlation between cataract disability-adjusted life years and levels of 
ambient erythemal (sunburning) UV radiation in China.404  
 
Myopia (short-sightedness) affects over 80% of young adults in many East 
and Southeast Asian countries. In other countries, there has been a rapid in-
crease in the prevalence of the condition, with around half of young adults in 
the USA and Europe now affected.89 Several studies have found that children 
who spend more time outdoors have a lower risk of developing myopia. In re-
search recently reported, two large trials in China involving primary school 
children (aged 6-11 years) showed that interventions over 1-3 years to in-
crease the time spent outdoors while at school were associated with a signifi-
cant reduction in the incidence of myopia.146, 166 It is not yet clear what ele-
ment of “time outdoors” provides the protective effect. Several studies show 
an increased risk of myopia in association with vitamin D deficiency.335, 395 Al-
ternatively, exposure to UV radiation or the shorter wavelengths (blue) of visi-
ble light (at the much higher level experienced outdoors compared to indoors) 
may protect against the development of myopia by slowing the axial growth of 
the eye.278 Childhood exposure may be particularly important for both the 
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risks and benefits; health messages should encourage children to have regu-
lar time outdoors, but also protect the eyes from high levels of UV radiation 
using hats, shade and sunglasses. 

2.11 Exposure to UV radiation may have benefits through both vitamin D and 
non-vitamin D pathways, but any benefits will need to be balanced 
against the known risks. The commonly accepted marker of vitamin D sta-
tus is the concentration of 25-hydroxyvitamin D (25(OH)D) in serum or 
plasma. In 2011, after a comprehensive systematic review of the literature, 
the United States Institute of Medicine concluded that a 25(OH)D concentra-
tion of 50 nmol/L is sufficient to optimise the bone health of most people. They 
further concluded that there was insufficient evidence of a causal association 
between low 25(OH)D concentration and non-bone health outcomes.161 While 
some groups argue for a higher cut-off for sufficient concentrations of 
25(OH)D,153 a recent study showed that a 25(OH)D concentration of ca 30 
nmol/L was sufficient to optimise bone mineral density and a range of markers 
of muscle strength and function in middle-aged women.385 
 
Recent exposure to UV radiation is commonly a major determinant of 
25(OH)D concentration,181 although a recent systematic review showed that, 
in regions with negligible exposure to UV radiation, it is possible for adults to 
maintain 25(OH)D levels >50nmol/L for several months. The authors specu-
lated that this could have been due to preceding exposure to UV radiation and 
storage of vitamin D and then delayed release during periods of low ambient 
UV radiation.282 Nevertheless, while the serum or plasma 25(OH)D concentra-
tion is a marker of vitamin D status, in many regions it is equally a marker of 
recent exposure to UV radiation. To separate out a specific causal effect of 
vitamin D on a health outcome, vitamin D supplementation studies are re-
quired. 
 
New evidence suggests a possible causal association between high vitamin D 
status and reduced risk and/or severity of asthma. Low maternal 25(OH)D 
concentration was associated with an increased risk of wheeze in the off-
spring105 and, in a meta-analysis, low concentrations of 25(OH)D in early 
childhood were associated with an increased risk of persistent asthma (com-
paring lowest vs highest category reported in each study).154 A meta-analysis 
found that vitamin D supplementation reduced the rate of asthma exacerba-
tions requiring hospitalisation or treatment with systemic corticosteroids.222 
These results indicate a specific beneficial effect of vitamin D, but do not pro-
vide guidance about the optimal concentration of 25(OH)D to reduce risk or 
severity of asthma. 
 
Exposure to the sun may have effects that are not mediated by vitamin D.210 A 
recent study showed that irradiation with UV-A reduced blood pressure tem-
porarily, possibly through release of nitric oxide stores in the skin (reviewed 
in384). In a study in southern Sweden, adults reporting a habit of intentional 
sun exposure had a lower risk of cardiovascular disease (CVD) and non-can-
cer/non-CVD death than those who avoided sun exposure.206 Compared to 
the highest sun exposure group, life expectancy in sun-avoiders was reduced 
by 0.6-2.1 years; avoidance of sun exposure was a risk factor for death of 
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similar magnitude to smoking in this study.206 Whether this association can be 
attributed to vitamin D, other UV-induced pathways, or differences in unmeas-
ured lifestyle factors (e.g., exercise) between people with high and low sun 
exposure, cannot be determined. 
 
The weight of risk vs benefit for sun exposure depends on the size of the ef-
fect and the proportion that can be attributed to low/high exposure to UV radi-
ation as well as the total burden of UV-related health outcomes. While there is 
some confidence in the burden of disease that can be attributed to overexpo-
sure to UV radiation,256 the range of diseases caused by low sun exposure 
and the size of any potential risks are unclear. 

2.12 The prevalence of vitamin D deficiency varies around the world, with 
some evidence that it is related to latitude. It is difficult to compare the 
prevalence of vitamin D deficiency between countries or over time due to the 
historical inaccuracy and imprecision in the measurement of concentrations of 
25(OH)D in blood. The development of standardised protocols and rigorous 
quality assurance schemes are now improving measurement and these have 
been used in several national health surveys (see Fig. 4). The overall preva-
lence of vitamin D deficiency (<50 nmol/L) across a range of European coun-
tries was 40%, with 13% moderately to severely vitamin D-deficient (<30 
nmol/L).64 
 
In the United States, standardised concentrations of 25(OH)D from the Na-
tional Health and Nutrition Surveys (NHANES) show no change in the mean 
value from 1998 to 2006 but an increase of 5 nmol/L from 2007 to 2010 which 
is partly due to vitamin D supplementation. The prevalence of vitamin D defi-
ciency (<50 nmol/L) was 30% from 1988-1994 and 26% in 2009-2010. Less 
than 7% had moderate to severe vitamin D deficiency.303 In the Australian Na-
tional Health Survey, 24% of Australian adults had concentrations of 25(OH)D 
<50 nmol/L and 7% <30 nmol/L.18 There was some evidence of a latitude gra-
dient, although this is likely to be somewhat masked by more vitamin D sup-
plementation in states with lower ambient UV radiation (10% in the most 
southern state compared with 2% in the most northerly state).18 
 
Studies from other areas have not used standardised measurements and thus 
need to be interpreted with caution. Nevertheless, there is evidence of wide-
spread deficiency in many parts of the world.260 Dark-skinned migrants to de-
veloped countries commonly have a high prevalence of vitamin D defi-
ciency.18, 220 
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Figure 1.  Distribution map of the proportion of population who have A), vitamin D defi-
ciency (<50 nmol/L) and B), severe vitamin D deficiency (<30 nmol/L), with restriction to 
population-based samples and a vitamin D assay that is standardised to the Vitamin D 
Standardisation Program. 
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2.13 Maximising vitamin D status while minimising DNA damage during sun ex-
posure can be achieved by several exposures per week to low doses of UV 
radiation. A study from New Zealand showed that the greatest increase in levels 
of 25(OH)D in serum over 8 weeks occurred with sun exposure (measured using 
personal UV sensors) equivalent to less than half of a sunburning dose to the 
whole body each week.307 Higher exposures resulted in only small additional in-
creases. However, a recent study showed that there was a high level of individ-
ual variability in the achieved 25(OH)D concentration for a given dose of UV irra-
diation.83 In Manchester, UK (53° North), repeated doses of UV radiation suffi-
cient to increase 25(OH)D levels from 36 to 54 nmol/L in people with fair skin did 
result in DNA damage to skin cells, but this was at least partially cleared by natu-
ral repair processes by 24 hours after the last exposure. The level of DNA dam-
age at the completion of the 6-week course of irradiation in the Manchester study 
was similar to that caused by a single exposure, suggesting DNA damage does 
not accumulate following exposure to repeated non-sunburning doses of UV radi-
ation.104 Recent research shows that there are many mutations in cancer-related 
genes in the sun-exposed skin of older adults – a comparable mutation load to 
that of many internal cancers (e.g., breast, uterus). However, these exist largely 
without causing clinical disease, due to efficient DNA repair and containment pro-
cesses.221 
 
Concentrations of 25(OH)D are increased in proportion to the amount of skin ex-
posed to the sun,181 particularly at lower levels of UV-B irradiation.43 These re-
sults suggest that regular, low exposures to UV radiation can increase/maintain 
25(OH)D levels while minimising DNA damage. While sunscreens can be de-
signed that maximise UV-B transmission for vitamin D production and provide ex-
cellent protection from UV-A irradiation,184 greater DNA damage also will result 
from the increased UV-B transmission so use of these sunscreens is not cur-
rently advised. 

3 Potential effects of current and future changes in strato-
spheric ozone, UV radiation and accelerated climate 
change on terrestrial ecosystems 

3.1 Large ozone-driven changes in climate in the Southern Hemisphere have 
occurred over the past 3-4 decades and these climate changes are continu-
ing to influence ecosystems in a variety of ways. Ozone depletion has played 
a major role in driving changes in temperature across certain parts of Antarctica 
and has also been implicated in changes in precipitation patterns across the 
Southern Hemisphere and into Asia46, 288 (see also section 1). Consistent with 
ozone-driven changes in temperature, plant growth rates and carbon storage in 
moss beds have increased over the past several decades at various locations on 
the Antarctic Peninsula and nearby islands.292 The seasonality of precipitation 
along with the magnitude of diurnal changes in temperature are the dominant 
factors influencing the distribution of high elevation woodlands of Polylepis 
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tarapacana (Rosaceae), a species of high conservation value in the South Ameri-
can Altiplano. Models predict that, by the end of this century, there will be signifi-
cant (up to 56%) reduction in the potential habitat of this species due to in-
creases in aridity. These findings add to the increasing evidence indicating per-
vasive and far-reaching effects of ozone-driven climate change on terrestrial eco-
systems. 

3.2 The increasing pressures of multiple environmental stress factors together 
with changes in plant exposure to UV radiation continue to highlight the 
potential interactions of the different stressors. The balance between initia-
tion of severe stress reactions and stimulation of normal regulatory pathways for 
growth and development has significant implications for plant growth and plant 
yield.46 Severe stress may occur from exposure of plants to increased UV radia-
tion together with environmental conditions such as climate extremes of tempera-
ture and drought. Although mechanisms differ, generation of potentially damag-
ing reactive oxygen species (ROS, viz., hydrogen peroxide, hydroxyl radicals, su-
peroxide radicals, and singlet oxygen) is a shared consequence of all these 
stressors, including ground level ozone. With increased ROS, there may be in-
creased damage and reduced plant vigour.81, 151, 216, 236 The effectiveness of anti-
oxidant defense systems that aid in removing ROS is dependent not only on the 
level of stress but also on crop cultivar.70 Likewise, selection of certain crop 
breeding lines with greater antioxidant capacity188 can improve the tolerance of 
agricultural crops to UV radiation, especially in areas of high UV radiation and 
other stressful conditions. 

3.3 Research in the ways in which plants sense and respond to UV radiation 
using multiple molecular mechanisms, has increased our fundamental un-
derstanding of the impacts of UV radiation and other stressors. Studies of 
plant perception of UV radiation show that, although many plant regulatory re-
sponses to UV-B radiation can be effected through the specific UV-B photorecep-
tor (UVR8), other photoreceptors are also likely to be involved in the wide range 
of plant response to multiple environmental conditions.39, 226, 236 Exposure to UV-
B radiation causes changes that affect plant growth and development, which are 
mediated by UVR8 or other mechanisms. These processes include metabolic 
changes, regulation of plant development, and plant acclimation and stress toler-
ance to UV radiation40, 343, 396, 402 and responses to other stressors such as plant 
pathogens.86 The clarification of the molecular mechanisms by which plants per-
ceive and respond to UV radiation enhances our ability to increase crop yield and 
control pests through management and breeding practices.26 

3.4 Certain male and female plants of the same species respond differently to 
elevated UV-B radiation with potential consequences for changes in popu-
lation composition and diversity. The response of many dioeciousd trees and 
shrubs to enhanced UV-B radiation depends on whether they are male or female. 
In some species, males are more sensitive, in others, sensitivity is more pro-
nounced in females. For example, in white mulberry, Morus alba, female plants 

                                            
d Having male and female reproductive organs in separate individuals. 
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show more negative effects in their morphology, physiology, biomass allocation 
and leaf structure than do males under enhanced UV-B radiation. This is likely 
due to the greater requirement of female plants for resources for reproductive de-
velopment.69 Enhanced UV-B radiation tends to decrease biomass and leaf thick-
ness in male plants of the dark leaved willow (Salix myrsinifolia), which, along 
with the UV-induced increase in leaf phenolics in females, suggests that the fe-
males have greater tolerance to UV-B radiation compared to males.274 
 
In a field trial with European aspen, Populus tremula, the female plants exhibited 
higher emission rates of volatile compounds (e.g., isoprene), an indication of 
stress response. In addition, there was greater compositional variability in their 
emissions under UV-B radiation than that in male plants.218 UV-B radiation also 
increases production of tremulacin, an herbivore defense-compound that is abun-
dant in aspen seedlings.42 Concentration of this compound was increased by 4 
and 11% under ambient and elevated temperature, respectively, but only in fe-
male seedlings, which grew taller than males.273 This change in chemistry may 
increase fitness of females to resist herbivores when exposed to enhanced levels 
of UV-B radiation. However, in some instances, male plants show a greater toler-
ance to increased UV-B radiation than do females, as evidenced in another pop-
lar, Populus cathayana.391 
 
The varying tolerance to UV-B radiation by male and female plants has implica-
tions for their population distribution and competitiveness with other species, 
which may alter plant diversity depending on whether male or female plants show 
greater or lesser tolerance to high levels of UV-B radiation. 

3.5 The distribution of plants is being altered by climate change such that the 
plants are being exposed to a unique set of environmental conditions to-
gether with UV radiation. Studies examining the response of plants along natu-
ral gradients of UV radiation are providing new insights into the mechanisms by 
which migrating species may acclimate or evolve to these changes in UV radia-
tion. 
 
Many plant species are spreading to higher elevations and/or latitudes in re-
sponse to climate change and this movement is expected to continue well into 
the future.163 Some evidence suggests that introduced species display higher mi-
gration potentials than native species, at least along elevation gradients.380 
Whether there are differences in UV acclimation or adaptation potentials between 
native vs introduced species is unknown, although a study by Wang et al.362 indi-
cates differences in UV sensitivity between introduced rather than native popula-
tions of Chinese tallow tree (Triadica sebifera). However, in this case, introduced 
populations were more sensitive to UV-B radiation than native populations. 
 
It is generally accepted that plant species or populations which have evolved in 
environments differing in exposure to UV radiation (e.g., high vs low elevations; 
high vs low latitudes) often exhibit differential sensitivities to UV radiation, alt-
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hough the mechanisms responsible for these differences are not fully under-
stood. Certain studies have shown that UV-screening within a species varies 
along elevation gradients (e.g., ref.295). A study by Wang et al.364 on high vs low 
elevation populations and species of rockcress (Arabidopsis) further suggests 
that this differential sensitivity to UV radiation is due, in part, to population differ-
ences in DNA damage and repair. Interactive effects of factors related to climate 
change may influence tolerance to UV radiation along elevation gradients, since 
increasing temperature can also reduce the levels of UV-absorbing compounds 
(e.g., ref.321). 

3.6 Many plants can sense and respond to rapid (minutes to hours) fluctua-
tions in UV radiation in ways that enhance their levels of UV protection. 
These changes have implications for the timing of plant defense and the use of 
UV radiation to improve food plant quality and vigour in controlled environments. 
In nature, plants experience substantial variation in exposure to UV radiation 
over time scales ranging from seconds to days as a result of seasonal and diur-
nal rhythms in solar elevation,22 shifting cloud cover,103 and gaps in plant cano-
pies.148 Whereas considerable attention has been given to understanding plant 
responses to changes in average UV radiation conditions that occur as a result of 
ozone depletion (refs 41, 46 and references therein), far less is known about re-
sponses of plants to rapid fluctuations under solar UV radiation. 
 
There is increasing evidence that plants can adjust their UV screening levels 
(Fig. 5 A) over a growing season (e.g., ref. 247), from one day to the next,328 over 
the course of a single day,28 and in response to rapid changes in cloud cover.30 A 
recent survey of 37 species growing in different locations has shown that the di-
urnal adjustment in UV screening is widespread among plants, although it varies 
substantially among species (Fig. 5 B).29 
 
The changes in UV screening over the day are rapid (within minutes), reversible, 
and are linked to changes in the levels and types of UV sunscreens (flavonoids 
and related phenolics30). How plants achieve these rapid adjustments in UV radi-
ation protection is not entirely clear, since the induction and accumulation of UV-
absorbing compounds and resultant changes in UV screening typically occur 
over time frames (days) that are considerably longer than these rapid 
changes.368 Plants are known to exhibit diurnal changes in gene expression, me-
tabolites and the activities of key enzymes involved in the synthesis of UV-ab-
sorbing compounds155, 178, 331 but whether a linkage exists between these molec-
ular changes and rapid adjustments in UV-screening is unknown. 
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The finding that plants can adjust their UV sunscreens over the day has im-
portant implications for the timing of plant responses to other abiotic and biotic 
stresses (e.g., drought and herbivory) that can vary in severity over the course of 
a day, (e.g., ref.122), and which often employ similar suites of secondary com-
pounds for both defense and UV radiation protection.26 The existence of a tem-
porally dynamic UV protection system in plants also has practical consequences 
for how plant UV radiation research is conducted170 and the culturing of plants in 
controlled environments when UV-B (and UV-A) radiation from artificial sources 
is employed to enhance food plant quality and vigour.305, 367 

3.7 The combination of UV radiation and constraints from climate change, 
such as drought and increasing temperatures, have the potential to change 
crop yield and food quality. Increasing concentrations of carbon dioxide (CO2) 
and high temperatures have an accelerating effect on ripening of some crops, 
which can result in an imbalance between certain plant pigments (anthocyanins) 
and sugar content, leading to a reduction in anthocyanins.224 In grape berries, 
where anthocyanins confer colour, taste, and also function as antioxidants and in 
UV-protection,284 there are indications that UV radiation stimulates production of 
anthocyanin, which improves the anthocyanin to sugar ratios.224 The extent of 
these effects will likely be variable and dependent on location, type of plant crop, 

 
 
Fig. 5. The location of UV sunscreens in plant leaves and the diurnal changes in UV sun-
screen protection.  A. shows a cross-section of a leaf of a typical broad-leaved plant illustrat-
ing the arrangement of major cells and tissues and the location of UV sunscreens (flavonoid 
pigments) in epidermal tissue.  B. shows diurnal changes in solar UV radiation reaching the 
ground under a typical clear sky and the response of a plant species that adjusts its UV pro-
tection over the day (okra) and one that does not (corn). 
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capacity for acclimation, duration of the stress conditions, and the influence of 
the interacting factors with ambient levels of solar UV radiation.88, 314, 326, 368 

3.8 Effects of increasing carbon dioxide may ameliorate potentially negative 
combined effects of UV-B radiation and drought. A recent study found that el-
evated levels of CO2 could have a beneficial effect on response of plants to 
drought.330 Carbon dioxide and water vapour exchange occurs through plant 
openings, the stomata, and studies find that UV-B radiation causes stomata to 
close (e.g., refs 145, 245, 338). However, several studies also show that UV-B radia-
tion stimulates the opening of stomata, (e.g., refs 99, 165). At the same time, an in-
teractive effect can occur between drought and UV-B radiation (e.g., ref.93), while 
elevated CO2 may ameliorate observed negative effects from both UV-B radiation 
and drought.372 In contrast, UV-B radiation may counteract the accelerating effect 
of carbon dioxide on ripening of crops such as grape berries,223 which, for certain 
crop quality traits, is seen as a positive effect of UV-B radiation. 
 
Simultaneous, naturally occurring environmental factors increase the challenge 
of reliably predicting the overall impact of changes by UV-B radiation on natural 
ecosystems or agricultural, horticultural, or silvicultural productivity. 

4 Interactive effects of UV radiation and climate change on 
aquatic ecosystems 
New data on the effects of radiation on aquatic ecosystems and how these sys-
tems respond to extreme events demonstrate the important role of UV radiation 
for food security and ecosystem services, including altering water quality, fishery 
productivity, effects of contaminants such as microplastics and synthetic sun-
screens, and the potential for solar disinfection of parasites and pathogens. 

4.1 Increases in terrestrial dissolved organic matter are decreasing exposure 
to UV radiation in many aquatic ecosystems. This widespread phenomenon 
known as “browning” is orders of magnitude more important in regulating 
exposure to UV radiation than are changes in stratospheric ozone, and is 
altering the structure and function of inland and coastal aquatic ecosys-
tems in fundamental ways. Browning has reduced the UV-transparency of 
many inland waters in North America and Europe because the dissolved organic 
matter (DOM) selectively absorbs shorter UV wavelengths of sunlight (Fig. 6). 
Browning is caused primarily by recovery from anthropogenic acidification related 
to clean air legislation in the 1990s combined with increases in annual precipita-
tion related to climate change. Recovery from acid deposition increases the solu-
bility of DOM in soil by reducing the ionic strength of solutions, thus reducing the 
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coagulation of DOM.231 
The implications for UV ex-
posure have now been 
demonstrated using a 
unique data set on brown-
ing in two lakes in north-
eastern Pennsylvania, 
USA, where the depth to 
which 1% of subsurface 
UV radiation penetrates 
has decreased by as much 
as five-fold (from over 10 m 
to about 2 m, Fig. 7),375 far 
exceeding the effects of 
ozone depletion. In addi-
tion to reducing transpar-
ency of inland and coastal 
marine waters to UV radiation, 
browning alters carbon cycling 
(see section 5), decreases water 
transparency to visible light, and is 
associated with increases in strati-
fication that deprive bottom water 
layers of oxygen and make them a 
poor habitat for fish and other 
aquatic organisms.375 Effects of 
browning on fish and their zoo-
plankton food can be negative,36, 

109, 375 neutral287 or positive109, 176 
depending on the depth and initial 
DOM concentration of the sys-
tem.375 Thus, browning is an im-
portant consideration for commer-
cial fisheries. While reduction in 
exposure to UV radiation is not 
the only effect of browning, experimental evidence suggests that this reduction is 
likely to play an important role in the spatial and temporal distribution of zoo-
plankton, which are the key link in aquatic systems between phytoplankton and 
fish (see sections 4.4 to 4.7). Further insights into how other browning-related ef-
fects on aquatic ecosystems (e.g., acidity, visible radiation, nutrients) alter food 
web and ecosystem responses to UV radiation will be enhanced where research 
uses a multiple stressor approach rather than studying single stresses. 
 
Recent evidence shows that browning is now a widespread phenomenon in lakes 
and near-shore marine environments. Browning in high latitude lakes is linked to 
increasing vegetation, longer growing season, and thawing of permafrost that is 

 
Fig. 6.  Similar to ozone in the atmosphere, dissolved or-
ganic matter (DOM) in aquatic ecosystems selectively ab-
sorbs UV radiation. The selectivity of absorption by DOM is 
not as strong as that of ozone, but stronger than that by 
smoke from wildfires. Adapted from Williamson et al. 
2016.374 

 
Fig. 7.  Increases in dissolved organic matter 
(DOM) and decreases in UV-transparency (depth 
to which 1% of subsurface 320 nm UV penetrates) 
related to browning in Lake Giles, Pennsylvania, 
USA, in recent decades. Adapted from Williamson 
et al. 2015.375 
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itself generating many new lake basins and wetlands.106, 358 Large subtropical 
and tropical rivers can double their release of DOM into coastal oceans during 
rainy periods.33, 107, 232 The effects on penetration of UV radiation are, however, 
restricted primarily to near-shore87 waters and quickly decline with increasing sa-
linity and degradation of DOM offshore.133 In contrast, Antarctic coastal waters 
that receive only limited quantities of river discharge and associated terrestrial 
DOM inputs are among the most transparent coastal marine ecosystems.159 The 
lack of data on UV radiation in aquatic ecosystems that are undergoing browning 
is a key knowledge gap. If this gap can be filled, it would help clarify the role of 
UV radiation in these changing conditions in aquatic ecosystems. Also, the impli-
cations for water quality, fishery productivity, and the potential for solar disinfec-
tion of parasites and pathogens important for food security and human health 
would become clearer. 

4.2 Extreme weather alters exposure to 
UV radiation in aquatic ecosystems. 
The Earth is becoming warmer and 
wetter, and both temperature and pre-
cipitation components of climate 
change can alter the transparency of 
inland waters to UV radiation.374 
Drought can increase transparency of 
water (see section 5.4), while sus-
tained heavy precipitation or extreme 
storm events can reduce water trans-
parency to UV radiation and visible 
light (Fig. 8). In California, patterns of 
increasing drought have been associ-
ated with increases in the transparency 
to UV radiation of Lake Tahoe as well 
as increases in the severity and fre-
quency of wildfires.374 Smoke from 
wildfires can reduce incident UV radia-
tion by 8-10%,265 or more, and reduce 
the ratio of UV radiation : visible light 
(PAR, photosynthetically active radiation, 400-700 nm) by almost half (Fig. 9).374 
This stimulates a shallower distribution of zooplankton grazers in highly transpar-
ent lakes influenced by smoke, with important consequences for aquatic food 
webs and ecosystem services (see sections 4.7 to 4.12). 
 
Several studies have investigated the effects of extreme precipitation events on 
water clarity more generally.142, 143, 325 Although they do not report changes in 
UV-transparency, the important role of DOM in regulating water transparency, as 
well as the selective absorption of UV radiation by DOM, makes it likely that 
these broader changes observed in water clarity are also paralleled by changes 

 
Fig. 8.   Transparency of water to UV radia-
tion and visible light decreases substantially 
following storm event periods with higher 
precipitation, but increases following periods 
of low precipitation during a similar time of 
year. Data are from Lake Giles, Pennsylva-
nia, USA. Adapted from Williamson et al. 
2016.374 
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in UV exposure of aquatic ecosystems. A critical knowledge gap is the lack of 
good data on the UV-transparency of aquatic ecosystems. 

4.3 Climate-induced changes in glaci-
ers, ice cover, and vertical water 
circulation are altering exposure 
to UV radiation in aquatic ecosys-
tems by increasing the seasonal 
exposure of organisms to UV radi-
ation and altering the vertical dis-
tribution of these organisms. The 
physical state of water – ice vs liquid 
and how it moves horizontally and 
vertically – affects the exposure of 
organisms to UV radiation. Conse-
quently, the extent of adverse effects 
of UV radiation in aquatic ecosys-
tems will vary. Accelerated climate 
change is reducing the duration of 
ice cover in inland and coastal wa-
ters,217 thereby increasing seasonal 
exposure to solar UV radiation and 
visible light (Fig. 10).160 Glacial re-
treat is increasing inputs of melt-wa-
ter discharge and glacial particles into downstream lakes, reducing the penetra-
tion of UV radiation.290, 319 
 
Most aquatic organisms are 
plankton, passively carried 
by the water. Exposure of 
plankton to UV radiation 
partly depends on how deep 
and quickly they are circu-
lated vertically near the sur-
face of the water where UV 
radiation is highest. This cir-
culation determines whether 
an organism receives a few 
minutes, several hours or no 
UV radiation each day. Cli-
mate change and the effects 
of ozone depletion on at-
mospheric circulation are ex-
pected to have regionally 
variable effects on the depth 
of ocean mixing48 and ocean 
circulation (see section 1.3 and ref. 288), which will either increase or decrease 

 
Fig. 9. The ratio of incident UV:visible light at 
Lake Tahoe decreased by almost half during 
the 2013 Rim Fire in California. These changes 
in incident UV:visible light can alter the vertical 
distribution of zooplankton in the lake (Urmy et 
al. 2016).346 Adapted from Williamson et al. 
2016.374  
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Fig. 10. Spring 2012 ice break-up in the Arctic Ocean 
along the coast of Greenland. Trends of earlier ice 
break-up and shorter periods of ice cover result in earlier 
exposure to UV radiation and longer growing seasons for 
these aquatic ecosystems. Photo credit: Samuel Hy-
lander. 
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UV exposure of plankton. In the Southern hemisphere, shifts in the latitudinal po-
sition of atmospheric circulation cells due to ozone depletion over the South pole 
also change the position of ocean currents with consequences for distribution of 
marine species distributions and subtidal marine communities. Cetina-Heredia et 
al.66 reported that recent intensification of the East Australia Current (EAC) influ-
enced the dispersal patterns of eastern rock lobster, such that this species range 
was ultimately shifted southward by ca 270 km. The predicted incursions of 
warm, nutrient-poor water from the EAC along eastern Tasmania have also in-
creased in strength, duration, and frequency of the incursions which has contrib-
uted to regional declines in the extent of giant kelp beds, marked changes in the 
distribution of nearshore fish, and allowed northern warmer-water species to col-
onise Tasmanian coastal waters.168 Declines in growth rates in Brazilian corals 
since the 1970s have been linked to increasing temperatures of the sea surface, 
which were correlated with ozone depletion.102 

4.4 Anthropogenic activity is causing water temperature, dissolved carbon di-
oxide, nutrient loading, and stratification to all increase in aquatic ecosys-
tems. The interactive effects of these changes can either worsen or ameliorate 
the negative effects of UV radiation on bacteria, phytoplankton (small suspended 
algae) and seaweed (e.g., kelp). Recent studies of the interactions between the 
effects of climate change and those of UV radiation in aquatic organisms confirm 
and extend previous results over the last decade.138, 344 High temperatures of wa-
ter usually enhance the ability of organisms to repair UV radiation damage, thus 
reducing negative effects as long as the increase in temperature does not put an 
organism near its upper tolerance limit.276, 356, 382 On the other hand, increased 
thermal stratification in lakes291, 374 is reducing nutrient supply to phytoplankton; 
as is already known for the open ocean,48 this usually increases sensitivity of 
phytoplankton to UV radiation.35 Less straightforward are the interactive effects of 
increased CO2 and associated acidification of seawater,68, 201 and nutrient load-
ing (e.g., from urban and agricultural runoff), which can either worsen or amelio-
rate effects of UV radiation on phytoplankton and bacteria depending on the con-
ditions and species involved.63, 95, 357 These new studies add to an emerging un-
derstanding that the effects of UV radiation interact with multiple anthropogenic 
changes in the aquatic environment and these changes affect how phytoplankton 
and bacteria acquire and store essential elements (C, N, P). These organismal 
responses can result in an increase or decrease in sensitivity to UV radiation 
through changes in the capacity for repair and photoprotection. Similarly, after 
acclimation, low UV radiation, typical of the Arctic, can have little effect on en-
demic seaweeds (kelps) under normal conditions, but can actually increase kelp 
growth under CO2 enrichment.123 

4.5 New evidence suggests that, despite the presence of UV protective mecha-
nisms, tropical zooplankton as well as mid-latitude fish, amphibians, and 
aquatic insects are sensitive to the negative effects of UV radiation with po-
tential implications for fish stocks. Zooplankton are key components of the 
diet of juvenile fish and have been shown to be sensitive to UV radiation. Even in 
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tropical regions with naturally high UV radiation such as the Red Sea,3 where or-
ganisms are expected to be more tolerant to UV radiation, they display high UV 
sensitivity. Furthermore, Won et al.381 demonstrated that zooplankton exposed to 
UV radiation in laboratory experiments allocate energy to DNA repair at the cost 
of growth and reproduction. 
 
New information has added to our understanding of how the negative effects of 
UV radiation on zooplankton can be counteracted by increasing concentrations of 
UV defense compounds such as carotenoids, melanin, and mycosporine-like 
amino acids.160, 248, 249, 304 Mycosporine-like amino acids can be transferred 
through the food web from phytoplankton to zooplankton,160 thus conferring toler-
ance to UV radiation to the latter organisms. Adequate vitamin D3 in the phyto-
plankton food source also enhances UV-tolerance of certain zooplankton.76 Fur-
thermore, several zooplankton species can sense and escape UV radiation by 
migrating to deeper waters.100, 139 This migration transports nutrients and carbon 
vertically within the water column and changes nutrient availability for phyto-
plankton as well as the availability of zooplankton as food for fish.  
 
Evidence continues to accumulate that UV radiation is a direct stress factor for 
fish, amphibians, and their aquatic insect food resources. For example, juveniles 
of a common reef fish show elevated respiration and lower feeding rates when 
exposed to UV radiation under laboratory conditions.350 However, at times the 
UV radiation can confer resistance to anthropogenic environmental stressors. For 
instance, exposure to UV radiation increases the resistance of spotted salaman-
ders to a formulated herbicide containing glyphosate.197 Under laboratory condi-
tions, aquatic insects such as damselfly larvae increase their UV-protective mela-
nin content but display impaired growth under UV radiation,85 although enhanced 
melanin production in these larvae was also associated with a reduced immune 
response in adults.85 These responses of zooplankton and aquatic insects – criti-
cal components in aquatic food webs – to UV radiation may be important for the 
growth, survival, and reproduction of fish and amphibians, including commercially 
important species. In some instances, exposure to UV radiation increases toler-
ance to contaminants, although the mechanisms for this still need to be eluci-
dated. 

4.6 The response of organisms such as fish, zooplankton, and other crusta-
ceans, to UV radiation is influenced by multiple environmental factors. Re-
cent studies considering interactive effects between UV radiation and other 
stressors of environmental change have shown new responses in both inverte-
brates and vertebrates. The effects depend on the species, and the magnitude of 
the stressors, their timing and type. Earlier ice-off (ice thaw) has been observed 
in many lakes and in the ocean217 and this will expose plankton to higher UV ra-
diation stress in spring. Calanus, the most important group of zooplankton to sup-
port North Atlantic fisheries, accumulates photoprotective compounds from their 
diet in synchrony with the breaking up of the ice (ice-out)160 but it is not known if 
they can change the timing of this UV protection if the ice-off continues to be ear-
lier in the future. In other systems, pigments that could protect zooplankton from 



                                                        Page 29 of 72 

UV radiation make them more susceptible to fish predation due to these pig-
ments increasing their visibility to these visual predators. A trade-off between UV-
protection and risk of being consumed leads to the extent of pigmentation being 
reduced in the presence of fish odour within two weeks.54 Although the mecha-
nism by which this happens is not known, it may involve changes in either the 
production or accumulation of pigments of different types.54 

4.7 Tolerance of predators to UV radiation as well as the nutrient content of 
foods can change the response of organisms in aquatic food webs to UV 
radiation. The geographic distribution of UV-sensitive predatory invertebrates in 
lakes expands when increased DOM provides a refuge from damage by UV radi-
ation. Consequently, the resulting increased predation by these more protected 
invertebrates leads to elimination of populations of their main prey, fairy 
shrimp.205 This demonstrates the key role of transparency of water to UV radia-
tion for predators and their prey. 
 
In coastal marine systems, higher quality food with more nutrients can increase 
tolerance of amphipods (shrimp-like crustaceans) to UV radiation.349 It has also 
been demonstrated that amphipods obtain UV-absorbing compounds from their 
macroalgae (seaweeds) food, when exposed to UV radiation.351 Reductions in 
exposure to UV radiation and the nutrient content of food can thus alter the fun-
damental nature of consumer-resource interactions and lead to the reduction or 
elimination of key invertebrate species in aquatic ecosystems.  

4.8 Changes in UV radiation can alter the behaviour of keystone zooplankton 
species. Solar UV radiation is an important behavioural cue in many aquatic or-
ganisms for orientation, communication, and mate-selection.376 Zooplankton ex-
hibit strong behavioural responses to UV radiation that can have profound eco-
logical consequences because they are perhaps the most abundant animals on 
Earth. They also play a fundamental role in water quality by consuming algae, 
and are the single most important food component for juvenile fish. The strong 
behavioural responses to UV radiation may thus alter aquatic food webs and fish-
ery productivity. Two recent in situ studies demonstrated distinct behavioural 
avoidance of natural solar UV radiation in highly transparent lakes.110, 195 Daytime 
depth distribution was not related to visible light, thermal structure, or the pres-
ence of fish, but instead deepened with increased transparency to UV radiation 
and depth of food resources.110 In another recent study that examined the behav-
ioural response of nine species of freshwater calanoid copepods (one of the most 
abundant types of zooplankton in lakes and oceans) from 15 populations, these 
copepods displayed not only the anticipated avoidance of the damaging UV radi-
ation in natural sunlight, but also attraction.258 Attraction was predominant in ani-
mals from more UV-transparent systems, suggesting that UV radiation is used as 
a cue for habitat selection, potentially allowing these copepods to utilize food re-
sources in surface waters and avoid overlap with less UV-tolerant competitors or 
predators.258 Instantaneous UV-avoidance may also be species-specific where 
some species seek refuge in deeper waters when exposed to UV radiation, 
whereas other species have little or no behavioural response to UV radiation.139 
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These less behaviourally responsive groups likely rely on other adaptations to 
avoid damage from UV radiation.139 Furthermore, a recent study has demon-
strated that stomatopod crustaceans (mantis shrimp) have selective UV filters in 
their eyes allowing them to utilize UV photoreceptors in well-lit surface waters.44  
 
Smoke from drought-related wildfires and biomass burning as well as increased 
input of UV-absorbing DOM may reduce underwater exposure to UV radiation 
(see sections 4.1 and 4.2), leading to a shallower depth distribution of zooplank-
ton in highly transparent lakes.346 These observations are consistent with the 
proposition that transparency regulates the relative importance of UV radiation vs 
visual predation risk as factors driving vertical migration of zooplankton in 
lakes.373 Hence, even though UV radiation is harmful to zooplankton and other 
invertebrates if exposure is high, UV radiation is also a natural environmental cue 
affecting orientation and vertical distribution in clear-water systems. In addition to 
changes in quality of water, the critical importance of zooplankton in aquatic food 
webs means that these changes in behaviour in response to UV radiation have 
important implications for fishery productivity. Responses to UV radiation alter 
the depth distribution of zooplankton and thus their vertical overlap in the water 
column with their algal food resources as well as fish predators. 

4.9 New models of productivity of phytoplankton enable estimates of inhibitory 
effects of UV radiation at an oceanic scale. Initial estimates of productivity 
for the Pacific Ocean are about 20% lower than predictions that ignore inhi-
bition by UV and visible radiation. Decades of studies have demonstrated that 
near-surface inhibition of phytoplankton photosynthesis by ambient UV radiation 
and, to some extent, excessive visible radiation, occurs in most marine and 
freshwater systems.141, 241 New research is providing critical information that is 
needed to generalise these observations to ocean-scale models in order to esti-
mate the importance of the effects of UV radiation on the oceanic carbon budget. 
Particularly important are the new descriptions of the effectiveness of specific 
wavelengths for inhibition by UV radiation of the key primary producers in open 
ocean systems, using Biological Weighting Functions (BWFs). These primary 
producers are the smallest planktonic algae, called picophytoplankton.242, 243 
Based on these BWFs, an initial study found that model estimates of total pri-
mary productivity in the Pacific Ocean (including the whole water column) are ca 
20% lower than estimates that ignore inhibition effects.243 Predictions show the 
strongest inhibition by UV-A and visible radiation in the near-surface zone where 
UV-B radiation is present, thus model estimates of the absolute effects of even 
an “ozone-hole” scale enhancement of UV-B radiation are minimal (<2% through-
out the water column).244 
 
Global estimates of the distribution of phytoplankton in aquatic environments will 
also be improved by better monitoring through satellite remote sensing,200 which 
will be augmented by the new Sentinel 3 mission in which a triad of platforms will 
be launched over a four-year period (2016-2020). Taken together, these ad-
vances will improve our ability to estimate how marine productivity is affected, at 
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present and in the future, by the interaction between ocean environmental condi-
tions (such as temperature, mixing depth, ocean acidification, pollutants, and 
transparency) and UV radiation sensitivity of phytoplankton. 

4.10 Warmer water temperatures and decreasing transparency of water to UV ra-
diation are increasing suitable habitats for many waterborne pathogens. 
Consequently, this may increase or decrease their infectivity, with implications for 
human health. Many waterborne pathogens and parasites such as Cholera, Giar-
dia, and Cryptosporidium cause severe gastrointestinal and other health prob-
lems, but infectivity is generally reduced when pathogens are exposed to solar 
UV radiation (both UV-B and UV-A radiation.98). Increased water temperature23, 

254 and decreased transparency to UV radiation – both due to accelerated climate 
change377 (see also 4.1 and 4.2), are increasing the infection potential and 
amount of habitat available for these pathogens and parasites. However, reduc-
tions in transparency to UV radiation caused by DOM or other dissolved and par-
ticulate substances may lead to an increase in mosquito-borne diseases such as 
malaria and Zika. Aquatic mosquito larvae (Aedes aegypti) can be controlled by 
certain fungi, but these fungi are themselves sensitive to UV-B radiation.194 
Therefore, the effectiveness of these fungal control agents will likely increase in 
environments with reduced UV radiation transparency.294 

4.11 Compounds in sunscreens used by humans to reduce damage by UV radia-
tion are contaminants of growing concern that have many detrimental im-
pacts on aquatic ecosystems. Like many pharmaceuticals and personal care 
products, substantial quantities of sunscreen compounds enter aquatic ecosys-
tems around the planet.179 These compounds are found in areas with large hu-
man populations and frequent beach use as well as remote regions such as the 
Arctic.12, 50, 342 Sunscreens also are found in urine of humans 116 and can be pre-
sent in high concentrations in wastewater effluent, but can be removed via exist-
ing treatment practices and exposure to solar UV radiation in surface waters.204, 

341 UV radiation-induced degradation can be faster in freshwater ecosystems 
than in marine ecosystems due to higher concentrations of natural sensitisers in 
lake water, possibly reactive nitrogen compounds, which speed up degradation in 
freshwaters.187 
 
Anthropogenic sunscreen compounds have been detected in many aquatic or-
ganisms such as mussels and fish.299 Some of these compounds can transfer 
from mother to offspring in aquatic mammals such as Amazon river dolphins6 and 
can bioaccumulate in aquatic food webs.193 These compounds have a wide 
range of negative ecological effects.297 For example, some compounds, such as 
the common UV sunscreen compound, oxybenzone, are endocrine disruptors in 
both vertebrates and invertebrates.259 Laboratory experiments with these com-
pounds have shown that, at concentrations higher than those in the natural envi-
ronment, the sex ratio of freshwater fish can be skewed.182 Other compounds are 
toxic to phytoplankton such as diatoms115 and midges259 and can facilitate 
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bleaching of coral.342 Thus, widespread application of synthetic sunscreens to re-
duce damage by UV radiation could be having many unintended negative effects 
in aquatic ecosystems.  

4.12 Degradation of plastic debris by UV radiation increases the concentration 
of microplastics in the environment, with potentially substantial negative 
ecological consequences. Microplastics, which are commonly defined as plas-
tic particles smaller than 5 mm in size, are a contaminant of growing environmen-
tal concern.334 Exposure to UV radiation contributes to fragmentation of plastic 
debris in the environment, thereby generating microplastic fragments and contrib-
uting to their degradation (see section 7.8). This UV-induced fragmentation in-
creases with warming temperature.94 Climate change and UV radiation therefore 
may interact to stimulate increasing quantities of microplastic fragments, espe-
cially in eastern Asia and the tropics where future increases in UV radiation are 
projected (see section 1). Studies show that microplastics are already wide-
spread in both inland183 and marine aquatic ecosystems.213 
 
Microplastics may have major detrimental environmental impacts on aquatic eco-
systems through the release of toxic compounds or by inhibition of biological pro-
cesses following ingestion. Exposure to UV radiation contributes to the release 
into the oceans of toxic compounds from plastics including bisphenol A, 
phthalates, citrates, and Irgafos® 168 phosphate.327 Many passive filter-feeders, 
such as mussels, ingest microplastics.53, 352, 370 However, little is known about the 
ecological impacts of microplastics in aquatic ecosystems beyond single species 
or laboratory studies.19, 370 

4.13 UV radiation and dissolved organic matter influence the types and quanti-
ties of toxic byproducts formed during chlorine disinfection of drinking wa-
ter. Disinfection byproducts are regulated by many governments because, at 
high concentrations, they are hazardous to human and animal health and can 
cause cancer.283 Exposure to solar UV radiation of water prior to treatment can 
reduce formation of disinfection byproducts.387 DOM that strongly absorbs UV ra-
diation produces more disinfection byproducts.20, 202, 262 Furthermore, concentra-
tions of disinfection byproducts can be high in reclaimed water because re-
claimed water often contains more DOM compared with non-reclaimed water.157 
UV radiation also breaks down contaminants such as the commonly prescribed 
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diabetes drug metformin,271 which forms potentially harmful disinfection byprod-
ucts in water treatment11 and ends up in many aquatic ecosystems.49 

5 Interactive effects of solar UV radiation and climate 
change on biogeochemical cycles in the environment 

5.1 Climate change affects UV-induced biogeochemical cycles. The term “bioge-
ochemical cycles” refers to chemical and/or biological transformations of natural 
and man-made substances (e.g., carbon, halogen compounds, and contami-
nants) in terrestrial and aquatic ecosystems. Biogeochemistry also includes the 
transfer of substances across environmental boundaries. Figure 11 shows sche-
matically how interactions between solar UV radiation and climate change affect 
processes or flows within and between terrestrial and aquatic ecosystems. A key 
aspect of this conceptual framework is movement of natural organic compounds 
from terrestrial to 
aquatic ecosys-
tems. This trans-
fer is enhanced 
by heavy precipi-
tation events 
(e.g., storms) 
and permafrost 
thawing, and 
may be reduced 
by droughts (Fig. 
11). Increased 
frequency of 
heavy precipita-
tion events, 
thawing of per-
mafrost soils, 
and droughts are 
likely caused by 
anthropogenic 
climate change. 
Droughts enable 
wild-fires, which, 
in turn, increase 
the likelihood of 
thawing of per-
mafrost soils. Im-
portant implica-
tions of thawing 
of the permafrost 
include release 

 
Fig. 11. Interactive effects of solar UV radiation and climate change on 
processes and flows within and between terrestrial and aquatic eco-
systems. The processes or flows indicated by arrows are discussed in 
sections 5.2-5.5 and 5.7. Key to symbols: Black arrows indicate link-
ages between environmental factors: + shows an increase in a pro-
cess or flow, - a decrease in a process or flow. Dashed arrows indicate 
direct effects of solar UV radiation on decomposer organisms. Grey ar-
rows indicate the flow of carbon within ecosystems. Blue arrows indi-
cate the flow of carbon from terrestrial to aquatic ecosystems. Green 
arrows refer to the process of “priming” (see sections 5.2, 5.3, and 
5.5). Red arrows indicate the production of carbon dioxide in terrestrial 
and aquatic ecosystems. POM and DOM stand for particulate and dis-
solved organic matter, respectively. 
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of carbon dioxide (CO2) and methane (CH4) into the atmosphere (see section 
5.5) and land erosion as the permafrost melts. 

5.2 Solar radiation, including UV radiation, increases the rate of breakdown of 
dead plant material, and may be an important regulator of carbon storage 
in most terrestrial ecosystems, even where litter is exposed to sunlight dur-
ing only a small fraction of the year. An understanding of the extent to which 
solar radiation drives the breakdown (decomposition) of dead plant material 
(known as plant litter) is essential for quantifying how ongoing changes in solar 
radiation (see section 1.2) influence carbon storage and cycling in terrestrial eco-
systems. Decomposition of plant litter via UV-induced processes has been 
shown to occur in arid-land ecosystems.17, 280 However, new studies suggest that 
exposure to solar radiation can stimulate the breakdown of plant litter in a range 
of ecosystem and plant litter types.16, 84, 117 For example, Mediterranean grass-
land experiments, where UV24, 117, 203 or total solar radiation has been selectively 
filtered out 120, 393 have shown that exposure to sunlight stimulates microbial ac-
tivity in plant litter (discussed in section 5.3). In addition, breakdown of plant litter 
is substantially reduced when UV radiation is reduced due to changes in vegeta-
tion cover from tree planting,10 or when plant litter mixes with soil.28, 150 The de-
composition of plant litter is not only affected by solar radiation but also by other 
environmental factors such as water availability, and varies with time on annual, 
seasonal or even daily time frames.84, 120, 280 

5.3 In terrestrial ecosystems, exposure to solar radiation, including UV radia-
tion but particularly blue-green light, alters the chemical composition of 
dead plant material in ways that accelerate its breakdown by decomposer 
organisms. The decomposition of plant litter is a critical process for nutrient cy-
cling and carbon storage in terrestrial ecosystems. Exposure to solar radiation 
can substantially increase the rate of subsequent breakdown of plant litter by de-
composer organisms. Recent research has demonstrated that this “priming” ef-
fect (see Fig. 11) results from solar radiation breaking down lignin, which makes 
sugars more available for microbial degradation.15, 16 Additionally, it is also now 
clear that stimulation of the breakdown of plant litter results from exposure to 
both UV radiation and particularly blue-green radiation.15, 16 While the effective-
ness of this process, and the relative effects of UV and visible wavelengths vary 
among plant species,16 the identification of the mechanism is an important step 
forward in our understanding of how solar radiation influences carbon cycling in 
terrestrial ecosystems. 

5.4 Droughts and wildfires interact with solar UV radiation to affect carbon cy-
cling. Evidence is accumulating that the intensity and frequency of droughts is 
increasing in some parts of the Earth as a result of climate change.147 In the 
Southern Hemisphere, droughts are additionally caused by the interactive effects 
of depletion of Antarctic stratospheric ozone and climate change288 (see section 
1.3). Droughts and wildfires interact with UV-induced carbon cycling in various 
ways. For example, droughts may reduce the flux of coloured dissolved organic 
matter (CDOM) into inland and coastal waters, which results in increased trans-
parency of water bodies to solar UV radiation374 (see section 4.2).  
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Wildfires are important sources of CO2 and other greenhouse gases, such as 
methane, to the atmosphere.101, 345 A new study301 has shown that boreal forest 
fires can transform soil organic matter (SOM) into compounds with greater UV-
absorbing capability, compared to the pre-fire SOM, particularly at high fire tem-
perature (> 600-700 oC).301 This enhancement in UV-absorption by SOM may in-
crease the fraction of SOM that is subject to UV-induced decomposition in water-
sheds impacted by wildfires.366 Hence wildfires can be direct and indirect sources 
of CO2 to the atmosphere, where the indirect source is due to the transformation 
of SOM into compounds with a higher UV-absorption.366 Furthermore, wildfires 
enhance the likelihood that permafrost soils will thaw and collapse.52 For exam-
ple, up to 0.5 m of thaw settlement was observed after recent fires in Alaska, 
causing impoundment of water and further thawing of permafrost52 (see section 
5.5). 

5.5 Solar UV radiation increases the biological availability of terrestrial dis-
solved organic matter from thawing permafrost soils. Permafrost soils store 
approximately twice as much carbon than is presently contained in the atmos-
phere.72 Global warming results in the thawing of permafrost soils and the re-
lease of terrestrial dissolved organic matter (tDOM) into surface waters, where it 
is subjected to UV-induced and biological degradation to produce CO2.79, 131, 329, 

365 Owing to its high photoreactivity, tDOM from recent thawing of permafrost 
soils readily undergoes UV-induced degradation.78, 365 Exposure to solar UV radi-
ation generally decreases the photoreactivity of permafrost tDOM but increases 
its bioavailability.77, 329 After exposure to solar UV radiation, Arctic permafrost 
tDOM was found to be >40% more labile to bacteria, compared with the same 
tDOM kept in the dark.77 An exponential increase in biotic tDOM degradation 
over time following permafrost thawing has been observed in Arctic surface wa-
ters306 and is due to the UV-induced production of bioavailable compounds from 
tDOM.77 Therefore, the increase in the bioavailability of tDOM by solar UV radia-
tion (“priming”) enhances the release of CO2 from aquatic ecosystems (see Fig. ), 
similar to the effects of priming in terrestrial ecosystems (see also section 5.3). 

5.6 Climate change enhances the UV-induced and biological production of pre-
cursors of reactive species that participate in stratospheric ozone deple-
tion. A new study363 has shown that low-lying tidal freshwater swamps may be 
important sources of chloroform (CHCl3) and bromoform (CHBr3) to the atmos-
phere. The reason is that sea-level rise and saltwater intrusion due to climate 
change bring halide ions (e.g., chloride ions (Cl-)) inland, where they react with 
tDOM in UV-induced processes to produce halocarbons.363 Thus climate change 
could enhance the UV-induced production and emissions of halocarbons that 
participate in stratospheric ozone depletion. Such an effect would represent a 
positive feedback on solar UV radiation. 
 
Climate change may also affect the biological production of halocarbons in 
aquatic ecosystems.208, 324, 333 The biological formation of short-lived bromocar-
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bons such as bromoform (CHBr3) in seawater involves phytoplankton and dis-
solved organic matter (DOM).208 The rate of formation of CHBr3 was reported to 
depend on the chemical composition of DOM;208 humic acid facilitated the biolog-
ical production of CHBr3.208 “Browning” of coastal and estuarine environments374 
(see section 4.1) could enhance the biological production of short-lived bromo-
carbons. Tegtmeier and coworkers333 estimated that, at present, ozone depletion 
potential (ODP)-weighted emissions of CHBr3 from the global ocean amount to 
9% of ODP-weighted anthropogenic emissions of all long-lived ozone-depleting 
halocarbons.  

5.7 Changes in solar UV radiation, whatever their cause (e.g., ozone super-re-
covery or not) will affect how much carbon dioxide is taken up or released 
by terrestrial and aquatic ecosystems, but the sign and magnitude cannot 
currently be defined. Some scenarios predict super-recovery of stratospheric 
ozone in the extratropical parts of the Earth in the second half of this century, 
which would result in substantial decreases in solar UV-B radiation56 (see section 
1.2). As a consequence, rates and the extent of UV-induced processes would de-
crease and this decrease would have multiple effects across various areas, in-
cluding biogeochemical cycles, but also air quality and health. For example, re-
duced rates of UV-induced degradation of natural organic matter would result in 
less production of CO2 in terrestrial and aquatic ecosystems. At present, the con-
sequences of possible future changes in solar UV radiation for biogeochemical 
cycles can only be described in a qualitative way.  

5.8 Stratospheric ozone super-recovery could lead to increased concentrations 
of terrestrially derived particulate organic matter in the ocean by reducing 
its UV-induced conversion to dissolved organic matter. Some of the plant-
derived material coming from terrestrial ecosystems is transported to the ocean 
as terrestrially derived particulate organic matter (tPOM) where most of it will be 
consumed by organisms but some will sink into the sediments or break down into 
DOM. Current research has indicated that light-induced conversion of tPOM to 
DOM (photodissolution) is primarily driven by the UV-B part of solar radiation that 
is sensitive to changes in atmospheric ozone207, 233, 302, 320 (see Fig. 11). Lower 
rates of UV-B-induced transformation of tPOM to DOM would lead to increased 
participation of tPOM in other aquatic processes including uptake into aquatic 
food webs and the transfer of tPOM into bottom sediments. The net result could 
be increased carbon storage in bottom sediments with reduced release of carbon 
dioxide to the atmosphere. 

5.9 The rates and nature of UV-induced biogeochemical cycling of chemical 
and biological contaminants may undergo changes by the latter part of the 
21st century. The photodegradation of contaminants in aquatic ecosystems in-
volves both direct and sensitised photoreactions.228 Possible future reductions in 
UV irradiance due to ozone recovery and reduced penetration of UV radiation 
into aquatic environments would result in increased persistence of contaminants 
associated mainly with decreased direct photodegradation rates. Direct photo-
degradation results from the absorption of solar radiation by the contaminant it-



                                                        Page 37 of 72 

self. For many organic contaminants, such as pesticides and "emerging chemi-
cals", e.g., pharmaceuticals, direct photodegradation is caused primarily by the 
shortest wavelength component of sunlight in the UV-B range (280-315 nm). 
Sensitised photodegradation is initiated through light absorption by another sub-
stance in the system with the contaminant, such as CDOM in aquatic environ-
ments,31, 233 which produces short-lived reactive transients that react with the 
contaminants.71, 185, 199, 212, 215, 230, 360 Recent developments in remote sensing 
techniques and surface measurements are providing new insights into the spatial 
and temporal distribution of the transients (e.g., hydrogen peroxide and superox-
ide),268 as well as additional information on the spatial and temporal distribution 
of CDOM in aquatic ecosystems.177, 209, 255, 316, 403 Enhanced terrestrial runoff due 
to more frequent heavy precipitation events could result in increased concentra-
tions of CDOM concentrations and reduced penetration of UV radiation into sur-
face waters. Taking this climate-change effect together with potential super-re-
covery of stratospheric ozone,56 one can speculate that the overall effect might 
be a shift from direct to indirect UV-induced transformations of chemical and bio-
logical contaminants.  

6 Interactive effects of solar UV radiation and climate 
change on tropospheric air quality and composition 

6.1 Trifluoroacetic acid (TFA) is the main degradation product of HCFCs, HFCs, 
and HFOs in the atmosphere. A recent review confirms that amounts of 
TFA from these halocarbons are small relative to other sources and there-
fore currently unlikely to pose a risk to humans and the environment. Few 
new studies on TFA have been published since the review by Solomon et al.317 
In a study conducted in Beijing, China, between 2013 and 2014, mean measured 
concentrations of TFA in the atmosphere were reported to be 1.5±0.2 ng m-3, 
mainly in the gaseous phase (1.4±0.2 ng m-3) with little in the particulate phase 
(0.06±0.008 ng m-3).135 The mean concentration in air is four-million times less 
than an occupational standard for protective action of 0.6 mg/m3 from the US De-
partment of Energy PAC Database,347 suggesting that atmospheric concentra-
tions pose minimal risk to humans. 
 
TFA is considered very stable in the environment; it is not degraded by the main 
atmospheric oxidants, the hydroxyl radicals (•OH). However, it can be degraded 
under laboratory conditions. A study has shown that TFA can be photolysed in 
water in the presence of electrolysed sulfuric acid (S2O8

2–), UV radiation and visi-
ble light (220–460 nm).156 This process may have some utility in an industrial set-
ting. Electrolysed sulfuric acid does not occur in nature and the reaction is only 
efficient under very acidic conditions–also not normally seen in nature–so that 
this reaction is of little relevance to the fate of TFA in the environment. 

6.2 Several common compounds are currently being discussed as alternative 
refrigerants. The negative impacts of their uses on air quality are expected 
to be small, but do not appear to have been evaluated recently. These so-
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called “natural” refrigerants include ammonia, hydrocarbons, and carbon dioxide, 
and are being considered as replacements for HFCs. Ammonia has long been 
used as a commercial refrigerant. Exposure to high concentrations has detri-
mental impacts on human health. In the atmosphere, ammonia participates in the 
formation of aerosols, thus affecting air quality but also contributing to climate 
cooling through scattering of solar radiation.313 Some model estimates of concen-
trations of atmospheric ammonia are less than observed values by factors of 2-4, 
indicating that the sources and sinks of ammonia are not well known.32 Neverthe-
less, full replacement of halocarbons by ammonia would still constitute a negligi-
ble fraction (<1%) of current global ammonia emissions. Due to its toxicity, am-
monia probably will not be used except in large-scale facilities279 where it cur-
rently accounts for ca 15% of the total refrigerant market.132 Short chain hydro-
carbons (e.g., propane and n-butane) are also being proposed as refrigerants, 
and could have some minor impacts on air quality,355 although this does not ap-
pear to have been recently re-assessed. Carbon dioxide has been used for many 
years as a refrigerant and has few consequences for air quality, but engineering 
challenges have limited its widespread use. 

6.3 The recovery of stratospheric ozone is expected to reduce UV radiation in 
the troposphere outside of the tropics, decreasing ground-level ozone in 
cities but increasing it in rural areas. UV-B radiation is a significant driver in 
the generation of ozone at ground level, particularly in polluted environments, 
leading to a small but not insignificant dependence of air quality on stratospheric 
ozone.216 As a result, increases in stratospheric ozone will slow the production 
and destruction of ozone at ground level. Larger concentrations of ozone in rural 
areas will be detrimental to agriculture and natural ecosystems, while smaller 
concentrations in urban areas are expected to be less damaging to human 
health.  Model calculations400 have suggested that UV-driven ozone destruction 
will be slower in rural areas, tending to increase its concentrations. In contrast, 
concentrations of urban ozone are expected to decrease due to slower produc-
tion in a lower-UV environment (see Fig. 12). However, this expectation is based 
on older models that did not have sufficient spatial resolution for confident as-
sessment. Many other factors are equally or more important in determining ambi-
ent concentrations of ozone. These include changes in emission of ozone precur-
sors (nitrogen oxides and volatile organic compounds), and climate-driven 
changes in temperature, humidity, and stratospheric-tropospheric circulation.27, 

219 As a result, the net effect of reductions in UV radiation and these other factors 
on ground level ozone remains uncertain, and a challenge for management of air 
quality. 
These changes in ground-level ozone may be exacerbated in the future if strato-
spheric ozone amounts exceed pre-ozone depletion levels (“super-recovery”), as 
expected for middle and high latitudes under some representative emissions sce-
narios.56 For example, at Northern Hemisphere mid-latitudes, the super-recovery 
could double rural ozone increments relative to those estimated by Zhang et 
al.400 for the “normal” recovery to pre-ozone depletion levels. Over the tropics, 
small reductions in stratospheric ozone are expected, with only minor effects on 
ground level ozone.56 Under some proposed geo-engineering schemes, even 
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larger stratospheric ozone values would be expected at mid-latitudes, and could 
lead to additional increases (up to 5%) in global ground-level ozone,253 with po-
tentially significant impacts on air quality. 

6.4 Evidence linking poor air quality to adverse health effects on humans and 
the environment continues to mount, but the effects of individual pollutants 
remain difficult to discern because they frequently occur together. Because 
changes in stratospheric ozone will have small but potentially significant impacts 
on air quality at ground level,216, this has implications for human and environmen-
tal health. A recent WHO Global Burden of Disease assessment for outdoor air 
pollution383 concludes that approximately 3 million premature deaths occurred 
globally in 2012 due to poor outdoor air quality. Other studies have arrived at 
similar estimates of mortality based on summing inferred effects of particulate 
matter (e.g., from industrial combustion processes, dust, fires) and ozone.196 
However, there is difficulty in separating the effects of particulate matter and 
ozone because they generally co-occur.14, 58, 216 
 
The combined impacts of air pollution and rising temperature are receiving in-
creased attention. Epidemiologic studies of the 2003 European heat wave have 
ascribed a significant fraction of observed mortality to air pollution.108, 128, 322 
 

 
Fig. 12. Schematic illustration of the evolution of ground-level ozone in urban air and its 
outflow, as a function of distance from emission sources. Dashed curve gives the refer-
ence using current UV radiation, while the solid curve is for decreased UV radiation ex-
pected upon recovery of stratospheric ozone. The green hatched area shows the result-
ant decrease in urban ozone, while the red hatched area shows the increase in regional 
(background) ozone. 
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A recent clinical trial has directly investigated this interaction and found that sim-
ultaneous experimental exposure to higher ozone and higher temperature was 
associated with a constellation of physiological responses indicative of slower 
dissolution of blood clots.172 Additional clinical trials are needed to further eluci-
date these mechanisms in anticipation of future changes in both climate and air 
quality. 

7 Materials damage due to solar UV radiation and temper-
ature 
Exposure to solar UV radiation has adverse effects on materials. Outdoor service 
lifetimes of materials are influenced if not determined by the rates of degradation 
through weathering. Increased exposure to UV radiation at some geographical 
locations coupled with rising ambient temperatures due to climate change, accel-
erate the rates of degradation of materials. The consequent decrease in service 
life can be countered by stabilisation technologies in the case of plastics, and 
surface coating or treatment for wood products. Here we assess the recent ad-
vances in understanding of the mechanisms of UV radiation-induced degradation 
that would help the development of stabilisers or coatings in commonly used 
plastics, wood, and textile materials. 

7.1 Surface yellowing of wood on exposure to UV radiation is correlated with 
the extent of chemical modification, allowing simpler monitoring of oxida-
tion rates in wood using yellowing measurements. Yellowing of wood45, 74, 296 
and signatures for oxidation products in the infra-red (IR) spectra336, 405 are indic-
ative of solar UV-induced oxidative degradation of wood. These changes are 
more pronounced during initial stages of exposure45, 336, 405 and are localised in a 
thin surface layer of wood405 and bamboo.180  
 
The fractional crystallinity of cellulose in bamboo increases during photodegrada-
tion as the amorphous cellulose fraction is preferentially degraded.180 Monitoring 
the progress of the photooxidative reactions is critical in the development of pro-
tective coatings for wood62. However, the spectroscopic methods used are tedi-
ous. The rate of yellowing was shown to be well correlated with changes due to 
oxidation as visualized by infra-red and novel hyperspectral imaging for photo-
degradation of chestnut wood under simulated solar UV radiation.45 A similar cor-
relation was also reported between the residual lignin content and tensile 
strength during natural weathering of fir-wood.405 If generally applicable, such 
correlations allow easier, non-invasive measurements (particularly yellowness in-
dex) to be used to assess the progress of oxidative changes in the wood.  

7.2 The effects of higher ambient temperatures and other factors on the ser-
vice life of wood and plastics outdoors can now be better estimated. Out-
door service life of common plastics such as polyethylene4, 392 and polypropyl-
ene225 is determined primarily by dose of solar UV radiation and temperature of 
the sample. Relationships that estimate the increased weathering of these at 
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higher ambient temperatures are commonly available.25, 272 However, a relation-
ship that also includes the intensity of solar UV irradiation, sample temperature, 
and the partial pressure of oxygen was recently reported and validated for poly-
propylene (PP).214 This approach allows for a more reliable estimation of service 
life of PP. 
 
Similar effects hold for wood species such as wood of Norway spruce,136 as well 
as beech wood.337. The discoloration of beech wood at 20-60 h of exposure to 
solar UV radiation was greater at 100% humidity than at 0%.337 As weathered 
wood and wood-plastic composites are more susceptible to subsequent biodeg-
radation by decaying fungi outdoors,65, weathering promotes further degradation 
in these materials. This has implications for protection against UV-induced 
weathering of wood at locations of high ambient humidity coupled with high tem-
peratures. 

7.3 Heat treatment of wood to control degradation by UV radiation shows 
mixed results with the majority of studies indicating no advantage in terms 
of UV stability. Industrial heat treatment of wood (at 180-240°C) is claimed to 
stabilise the wood against solar UV radiation and weathering.7 Heat treatment of 
woods can yield a stable hydrophobic surface with improved resistance to de-
cay.61 However, heat treatment of poplar, black locust246 and other varieties of 
wood190, 390 showed no such improvement in UV stability. Even where light-in-
duced discolouration was controlled by this treatment, spectroscopic data still 
showed marked degradation due to heat treatment.73 The presence of different 
types of extractives261, 312 in wood might account for the variability in results; ex-
tractives are organic compounds in wood that can be extracted with solvents. 
Variables affecting the level of UV stability delivered by thermal treatment of 
wood must be further studied before it can find widespread commercial use in 
outdoor applications.  

7.4 Both bulk chemical modifications and surface coatings effectively control 
solar UV-induced degradation of wood. Bulk modification of rubber wood with 
isopropenyl acetate to enhance their durability and hydrophobicity also improve 
their solar UV stability.239 In laboratory exposures to simulated solar UV radiation, 
the wood showed photobleaching instead of yellowing after 250 h of accelerated 
weathering, while the untreated control yellowed deeply. Copper ethanolamine 
surface coating164 used to stabilise Japanese larch wood against degradation by 
solar UV radiation can also be effective as a UV-protective primer as found for 
Southern pine wood.401 However, copper compounds are well known to leach out 
during use158 with potential environmental impacts. Conventional UV stabilisers 
used in surface varnishes that are effective in softwood and bright hardwood 
products do not prevent bleaching of dark woods (rosewood, ebony, mahogany, 
or black walnut) or heat-treated wood exposed to UV radiation.261 Better stabilis-
ers that can control photodamage of dark wood need to be developed. 

7.5 Lignin used as a filler in polypropylene acts as a stabiliser against degrada-
tion by solar-simulated UV radiation. Lignin, a natural, complex organic poly-
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mer, making up a large part of woody plant tissue, is also a byproduct of the pa-
per industry, and is being used to increase stabilisation of materials because of 
its antioxidant properties. For example, lignin filler is generally known to contrib-
ute antioxidant properties in polyethylene and polypropylene (PP).114, 129 Com-
pared to powdered wood, poplar-derived lignin is a superior UV stabiliser and an-
tioxidant.264 The elastic modulus of composites filled with wood powder was re-
duced by ca 30% when exposed to laboratory-accelerated weathering for 960 h, 
while no change (or even a slight increase) was obtained in lignin-filled PP under 
the same conditions. Use of wood-derived lignin as opposed to powdered wood 
in wood-plastic composites shows promise provided economic feasibility in large-
scale manufacturing can be demonstrated.  

7.6 Nanoparticles and nanofillers are increasingly used as effective solar UV 
stabilisers in materials. Nanofillers can act as UV stabilisers in plastics, 
wood144, 250 and in textile fibres.2 In spruce wood, for instance, zinc oxide (ZnO) 
nanoplates generated in situ using a precursor absorbed into the wood, reduced 
total colour change by 75% compared to untreated wood after exposure to UV 
radiation for 102 h.134 A similar effect was found with nano-ZnO in poplar wood,90 
composites of beech wood and polyethylene275, and nanotitania in bamboo and 
polyethylene composite.275 These technologies are still at the research stage. Alt-
hough they show promise as effective UV radiation stabilising technologies, fur-
ther development is needed before their practical importance can be assessed. 
 
Nanoparticles work similarly in protecting textile fibres. Recent laboratory studies 
have demonstrated the potential of surface treating textile fibres with nanoparti-
cles for improving their solar UV radiation stability. Nanoparticles of zinc oxide 
used with cotton,2, 189 nylon,281 and aramids361 show promise. Aramids are spe-
cialised fibres used in thermally-resistant industrial textiles. Nanoparticles of tita-
nia 174, graphene,37 and gold 394 have also been explored for surface protection of 
fibres from UV radiation. For instance, cotton fibres, functionalised with ZnO and 
carbon nanotube nanocomposites at a level of 22% by weight increased the UV 
protection factor (UPF) of cotton from 6 to 40.38 Treatments used in these studies 
have not been scaled up to allow assessment of their production in commercial 
processes. Also, their economic feasibility needs to be studied before they can 
be recommended for potential large-scale use.  

7.7 Solar thermal collectors made of polycarbonate plastic have lower environ-
mental impacts compared to conventional collectors made of glass and 
metal. However, they have shorter service lifetimes because of premature loss of 
optical and other properties on exposure to solar UV radiation. Solar thermal col-
lectors made of plastic can be a practical and cost-effective technology for pro-
duction of electricity.75 An all-polycarbonate collector in an aluminium frame 
weighs only a third of a conventional metal/glass collector but has been shown to 
be 8-15% lower in efficiency. However, it is lower in cost and the life cycle energy 
used in its manufacture is recovered in only 3.8 years of operation as opposed to 
8.3 years for conventional collectors.67 A serious drawback of polycarbonate5 or 
polypropylene359 used in collectors is their loss of optical and other properties on 
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weathering. The service life of plastic encapsulants in conventional photovoltaic 
modules is also determined by weathering-related changes.169 Advances in stabi-
lisation that improve the lifespan of plastics used in solar energy applications will 
help advance this clean energy technology.  

7.8 Generation of micro- and nanoplastics in the marine environment is accel-
erated by UV radiation as well as high temperatures. Combined effects of so-
lar UV radiation and high temperatures cause plastic debris in the ocean environ-
ment to break-up into micro- and nanoscale particles.192 These microplastics are 
present in oceans270 as well as freshwater bodies183 and they concentrate persis-
tent polar chemicals in sea water and, via ingestion, provide a credible pathway 
of these chemicals into the marine food chain.(352 and section 4.12) Physiological 
effects of ingestion of these particles on a range of marine organisms have been 
reported.94, 370 Since generation of microplastics is a UV radiation-initiated frag-
mentation process, better UV-stabilisation of plastic products, especially packag-
ing products, will help slow down the rate of production of particles in the environ-
ment. 
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